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Abstract 

This paper introduces a new approach to visualising and interpolating financial time series data, e.g., 

Bitcoin prices, in a spatial domain using the notion of spatialization: forming a spatial representation 

of non-spatial phenomena. The proposed algorithm first utilises temporal components of the 

observations, i.e., date and time, to build a 2D map-like space. It then uses the coordinates of the 

observations in the 2D map along with the Bitcoin prices to construct a 3D topographic map. We use 

this map to create 30-minute frequency data, and compare it with the actual observed Bitcoin prices. 

The results show the reliability and effectiveness of the proposed method as a new graphical tool in 

analysing time series data. 

1. Introduction 
 
The vast majority of the algorithms in financial markets are established based on using time series 

data observed at equal time intervals. In this structure, an observation at time interval t, xt, is formally 

defined via a n-dimensional vector, where n∈ ℕ. A typical case of time series data is when n=1, e.g., 

using the closing prices of Bitcoin [1,2]. In this case, there is one observation at each time interval that 

changes with time. These changes are usually represented and modelled using an irregular line or 

curve in a one-dimensional space, where the x-axis represents time with a fixed interval, and the y-

axis represents the variable of interest, e.g., the daily closing price of Bitcoin. 

In the case that n>1, e.g., using the opening, high, low and closing prices of Bitcoin [3,4], the algorithms 

use a set of observations at each time step for modelling time series data. In this scenario, the changes 

in the observations are typically represented via a combination of regular and irregular lines, e.g., 

candlestick or bar charts. The irregular horizontal line is formed along the x-axis using the scalar value 

observed at equal time, e.g., the daily closing price.  The straight vertical lines are applied to represent 

the opening, high, low and closing prices along the y-axis. The lengths of vertical lines are adjusted 

based on the difference between the values of the observation vector at each time interval.  

The above geometric structures have two main characteristics in common. First, they use lines and 

curves as main geometric elements to model the dependencies between observations in the time 

series. Second, they can only represent observations in a one-dimensional cross section view. In this 

paper, we propose a novel approach for analysing and visualising the time series data in a 3D map-like 

environment. This approach is formulated based on spatialization: modelling a non-spatial 

phenomenon in a spatial domain [5,6]. The use of this model gives the power to time series 

representation algorithms to simultaneously link observations gathered at different times and 

represent them in a 3D space. This enables traders or financial analysers to use new graphical tools, 

e.g., 3D projections, in analysing and representing time series data in a simple and meaningful way. 

In Section 2, the methodology of the proposed method will be described. Section 3 discusses the 

results of the proposed method.  Section 4 concludes the main outputs of the paper and presents 

other areas for the development of the proposed method in future research. 

 



2. Data and methodology 
 
To interpolate data and assess the proposed approach, Bitcoin data from August 1, 2021, to August 

13, 2021, was downloaded from https://firstratedata.com/i/crypto/BTC and applied. We used one-

minute frequency data to identify each day’s opening, high, low, and closing price and the times 

assigned to these prices. The proposed method is implemented in two steps: creating the 2D 

spatialized map and constructing the topographic map. MATLAB2022a and ArcGIS 10.5 are applied to 

create, analyse, and render the 2D and 3D maps in a 3D environment. 

 

2.1. Creation of the 2D spatialized map 

To transfer the temporal data of Bitcoin prices into a 2D map, we use analytic geometry, where the 

location of each point in a two-dimensional space is defined by an ordered pair of numbers (x, y). Let  

𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑡}, t = 1, 2, . . ., N represents a set of Bitcoin observations where N>1, and specifies 

the total number of observation days. 𝑏𝑡 values include a pair of numbers (𝑝𝑖 , ℎ𝑖), i = 1, . . ., 4., where 

𝑝𝑖 is the price and ℎ𝑖  is the time at which this price is recorded on day t. Therefore, each dataset's price 

has two temporal components: event time and event day. Event times repeat themselves every 24 

hours via the opening and closing prices of each day, like the day/night cycle in the real world. We use 

event time values, ℎ, to define a y value for each price in the 2D map. Event day, t, determines the x-

coordinates for each price in the 2D map. In the time-space, they are defined based on the notion of 

linear time, moving in one direction without repetition. We apply these two components (t, h) to place 

data samples (Bitcoin price) in a 2D map (Figure 1 (a)).  
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Figure 1.  (a)  and (b) display the events (prices) along the x-axis and y-axis, and (b) the black and brown arrows show 
different directions in each square to link the open price in one day to the close price in the next day. (b) creates a 

symmetric 2D space along the southwest to the northeast axis every 48 hours.  

To convert data from a linear structure to a polygonal structure, the data points are also added to the 

horizontal lines at y=0 (0 minutes) and y=24 (1440 minutes) (Figure 1 (b)). This figure illustrates a 2D 

https://firstratedata.com/i/crypto/BTC


coordinate system that includes a new set of observations 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑘}, k = 1, 2, . . ., S, where S= 

4×(2N-1) and defines the number of point features in the 2D vector map in Figure 1(b). Each point 

feature 𝑓 has the coordinate attributes x, y that determine the location of each point (price) on the 

map. As shown in Figure 1(b), there are two routes in each tile that link opening, high, low, and closing 

prices of each day to the prices the next day. These two routes form a square of size 24×24 every 24 

hours on the x-axis, where time moves from one day to the next. The 2D map in Figure 1(b) provides 

a 2D planar framework that allows the prediction algorithms to use spatial tools and functions to 

analyse crypto data.   

2.2. Construction of the topographic map 

Let  𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} represent a set of m unknown values where m is specified based on the 

number of cells in the above 2D map. Each 𝑝 has coordinates determined by (x, y). To calculate the z 

value of 𝑝 in the 3D map, the method uses the following equation: 

𝑝(𝑥, 𝑦) = ∑ 𝑤𝑖 × 𝑓(𝑥𝑖 , 𝑦𝑖)
𝑛
𝑖=1  , (1) 

where 𝑝(𝑥, 𝑦) is the estimation at (x, y), and n is the number of nearest neighbors used for 

interpolation. 𝑓(𝑥𝑖 , 𝑦𝑖) is the observed data from set  𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑘}, and 𝑤𝑖 is the weight 

associated with 𝑓(𝑥𝑖 , 𝑦𝑖).  The Natural Neighbor Interpolation (NNI) algorithm is applied to calculate 

𝑤𝑖[7]. The weights are determined via a set of irregular polygons formed based on the location of 

observation and unknown data in the 2D map. In this algorithm, the closest sample points to an 

unknown point have the highest influence on that point’s value in the spatial domain. The method, in 

fact, indirectly applies Tobler's first law of geography “everything is usually related to all else, but those 

which are near to each other are more related when compared to those that are further away” [8]. 

This is similar to the rules that are generally applied in a time domain by conventional prediction 

algorithms to estimate an unknown price. Figure 2 shows a Bitcoin map generated using Equation 1 

via an iterative process. In Figure 2, the green arrows indicate when the closing price is higher than 

the opening price, and the red arrows illustrate when the closing price is lower than the opening price.  
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Figure 2.  (a) 3D cross-section view of Bitcoin price. (b) The produced Bitcoin map using the NNI algorithm. Point features 
are applied to show the location of each price on the map. 

We use the 3D maps to extract Bitcoin prices each day to assess the behaviour of Bitcoin prices. Figure 

3 (a-d) illustrates the behaviour of bitcoin prices using the proposed method between the closing price 

of one day and the opening price of the next day, which have the same value. These graphs have a 

symmetric shape based on line x=34, 
√(242+242)

2
. This is because sample points are repeated along the 

lines y=0 and y=24, as the line y=0 includes the data from one day and the line y=24 contains samples 

of the next day. Figure 3(b) shows that the opening and closing prices are close in day 2. In Figure 3(a), 

a pit exists close to the endpoint in the graph, which means that the lowest price on day 1 is similar to 

the closing price on day 1.  
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Figure 3. (a-d) profile views of the map (e) along the northwest-southeast line (blue). (f-i) profile views of the map (e) along 
the southwest-northeast line (black) 

Profiles in Figure 3(f-i) are created using the southwest-northeast line. That means these profiles show 

the change in exchange price from one day to the next. They are a scaled representation of 48 hours 

of data between two closing prices. Figures 3(f) and 3(g), show a steep downward slope, which means 

the prices are falling. Figure 3(h) shows a pit close to the line x=17 and two peaks around the end 

points. This illustrates a transition from a red market to a green market. Figure 3(i) displays a pit 

around the starting point and a peak near the ending point, indicating that the prices in day 5 are 

higher than the prices in day 3.  

3. Results  

To quantitively assess the results of the proposed method, we use the 30-minute frequency Bitcoin 

prices, which are divided into two groups: Dataset 1 (1/8/2021-4/8/2021) and Dataset 2 (8/8/2021-

12/8/2021). The following metrics: RMSE (root mean squared error), MAPE (mean absolute 

percentage error), and DA (directional accuracy) are applied to assess the accuracy and dynamic 

behaviour of the interpolated prices via the 3D maps [2].   
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Where the 𝑦(𝑡) and  𝑦̂(𝑡) are the actual and interpolated prices at time t, respectively, and n is the 

number of observations. In Equation 4, 𝑎(𝑡)=0 if (𝑦(𝑡 + 1) − 𝑦(𝑡)) × (𝑦̂(𝑡 + 1) − 𝑦(𝑡)) < 0, 



otherwise 𝑎(𝑡)=1. To transform the irregularly spaced time series prices into regularly spaced time 

series prices, we also use the 8th degree polynomial, and the Hermite interpolation function, which is 

denoted as irregular data interpolation (IRDInterpolation) in Table 1. This allows us to compare the 

performance of the proposed method against these two conventional methods, which are usually 

applied to create regular time series data from irregular time series data. We also apply the Hermite 

interpolation function to transform the 24-hour frequency prices into 30-minute frequency prices, 

denoted as regular data interpolation (RDInterpolation) in Table 1. This enables us to assess the effect 

of using multiple observations, namely high and low prices, in the interpolation process. Table 1 shows 

the results of these four methods in terms of the RMSE, MAPE and DA values. The best and worst 

values are highlighted in bold and underlined, respectively. 

Table 1.  shows the RMSE, MAPE, and DA values of the interpolation data created using four different methods:  the 

proposed method (3D maps), IRDInterpolation, RDInterpolation, and the 8th degree polynomial function. 

Data Method RMSE MAPE DA 
 
Dataset 1 

Proposed method 484.75 0.91 56.25 
IRDInterpolation  594.70 1.12 54.17 
Polynomial 724.45 1.19 55.73 
RDInterpolation  552.30 0.99 55.21 

 
Dataset 2 

Proposed method 429.14 0.75 58.33 
IRDInterpolation 485.76 0.89 53.33 
Polynomial 658.99 1.10 58.33 
RDInterpolation 519.98 0.91 55.00 

As shown in Table 1, the proposed method provides better results compared with the other three 

methods for both datasets. In Dataset 1, the proposed method improves the RMSE values by more 

than 18%, 33%, and 12% compared with the IRDInterpolation, Polynomial, and RDInterpolation 

methods, respectively. For the MAEP values, an improvement of 17%, 23%, and 8% can be seen using 

the proposed method compared to the other methods. The highest DA value for Dataset 1 is 56.25, 

which belongs to the proposed method. This indicates that the 3D maps not only improve the level of 

accuracy of the interpolated data but also model the dynamic behaviour of time series data better in 

comparison with the other methods.  

The RMSE and MAPE values confirm the better performance of the IRDInterpolation and 

RDInterpolation algorithms compared with the polynomial method. However, the DA values in Table 

1 indicate that the polynomial algorithm performs better than the interpolation function in modelling 

the dynamic behaviour of the interpolated time series prices. This is because the interpolating function 

must pass exactly through all the observed prices. Therefore, if there is a sudden jump or drop rise in 

the Bitcoin prices, the algorithm might create unwanted undulations by decreasing or increasing 

slopes of interpolant at the interpolation points.  This can change the dynamic behaviour of the time 

series data. The results in Table 1 for Dataset 1 also show the better performance of the 

RDInterpolation method compared with the IRDInterpolation, while both methods use the same 

interpolation function to create the data samples. The possible reason for the better performance of 

RDInterpolation is that the method is formed based solely on the closing price observed with the 24-

hour interval. Therefore, the low and high prices cannot affect the slopes of the interpolant. While the 

RDInterpolation algorithm is formed based on multiple observations. This can limit the accuracy of the 

interpolation function when there is a sharp rise or fall in the Bitcoin prices.  

Similar to Dataset 1, the results of the proposed method show a better performance in generating the 

interpolated prices based on Dataset 2 compared with the other three methods. For example, the use 



of the 3D map generated data shows an improvement of more than 12% for the RMSE and MAPE 

values compared with the second-best RMSE and MAPE values in Table 1.  For Dataset 2, the highest 

DR value is 58.33, which belongs to the polynomial and the proposed algorithm. However, the RMSE 

and MAPE values show that the polynomial function performs poorly compared to the proposed 

method. The poor results of the polynomial function can be due to the fact the function is formed by 

fitting a mathematical model to the prices. Therefore, it is not necessary for the function to pass 

precisely through the observed prices. This can reduce the model’s accuracy, especially when the 

volatility of the Bitcoin prices is high. For both datasets, a comparison between the results of the 3D 

maps and RDInterpolation confirms that the use of the closing, low and high prices to interpolate the 

time series data can significantly improve the accuracy of the interpolated data. Figure 4 shows the 

time series data and its corresponding trend components for Dataset 1 and Dataset 2, which are drawn 

using the actual data and the interpolated data.   
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Figure 4.  (a), (b), and (c) illustrate the trend component of the time series data, the combination of seasonal and trend 

component of the time series data, the time series data, respectively, for Dataset 1 using the actual data (blue), the 
proposed method (red), the polynomial function (yellow), the IRDInterpolation method (purple), and the RDInterpolation 
method (green).  (d), (e), and (f) display the trend, combined seasonal and trend, and time-series data for Dataset 2 and 

using different methods, according to the colour code shown in Figure 4, respectively. 

Figure 4(a) illustrates that the geometric behaviour of the trend created by IRDInterpolation highly 

coincides with the trend generated using the 3D maps. This is because, in both methods, the model is 

formed by passing through the observed prices. Figure 4(a) also displays that there is a gap between 

the trend created by the RDInterpolation and IRDInterpolation method from time 0 to time 1800, 

where there is a sharp drop in the Bitcoin price, while both methods use the same interpolation 

function. This can be explained by the fact that the RDInterpolation method uses more information to 

interpolate the data.  The graphs in Figure 4 (b) are formed by adding the seasonal component to the 

trend of the time series data. It can be seen that the proposed method shows better performance 

than the other methods. A comparison between graphs in Figure 4(c) and Figure 4(b) also confirms 

the better performance of the 3D map in estimating the stochastic component of the time series data 

compared with the other methods. 

In contrast to Dataset 1 that there is a downward trend, Figure 4(d) shows an upward trend for the 

Bitcoin prices based on Dataset 2. Similar to the graphs in the first dataset, the trend of the proposed 

method is the closest trend to the actual data trend. This indicates the ability of the 3D maps to 

accurately interpolate prices under different circumstances. Figure 4(e) displays that the graphs of the 

3D maps and the IRDInterpolation are similar. However, Figure 4(f) shows the created graph by the 

proposed method is closer to the actual data than the graph generated by the IRDInterpolation 

method. This means that the 3D map estimates the stochastic component of the time series data 

better than the IRDInterpolation method. The results in Table 1 and Figure 4 confirm the high 

capability of the proposed model to analyse time series data and also interpolate time series data 

without setting any polynomial functions, which are usually applied by the conventional interpolation 

methods.  

4. Conclusions and future works 

This paper proposed a novel approach for visualizing and analyzing financial time series data in a three-

dimensional space using spatialization. The method used the temporal elements of Bitcoin prices first 



to transfer data into a 2D map and then to create a 3D surface. In this study, we used the NNI algorithm 

to estimate the price of unknown points in 3D maps based on spatial relationships between known 

and unknown feature points.  

The results indicate the reliability of the proposed method in analyzing and visualizing time series data 

in a straightforward manner. It also shows the capability of the method to interpolate the time series 

data without setting any polynomial functions. Using spatial tools, such as hillshade mapping or 

visibility mapping to implement financial concepts, e.g., modelling volatility or predicting return prices, 

would be an exciting area for future research.   
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