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Unmasking and Rethinking Hierarchical Inefficiency in 
Healthcare Systems 

Abstract 

This study introduces a hierarchical Bayesian framework to disentangle inherited and self-generated inefficiency 

in publicly funded hospital systems. Traditional stochastic frontier models typically assume that inefficiency 

arises solely at the provider level. This approach challenges that orthodoxy by allowing inefficiency to propagate 

through interdependent administrative tiers—from provinces and regions down to individual hospitals—capturing 

the structural nature of performance constraints. 

Using 942 hospital-level observations across Alberta, Nova Scotia, and Ontario (2015–2019), the model 

decomposes persistent input-oriented technical inefficiency into three latent components: provincial inherited 

inefficiency, regional inefficiency conditional on the province, and hospital-level self-generated inefficiency. 

These components are specified using log-normal distributions within a shrinkage-based hierarchical structure to 

reflect the nested governance of health systems. 

Findings reveal that inherited inefficiency accounts for between 72.8% and 76.1% of total persistent inefficiency 

across provinces—72.8% in Alberta, 76.1% in Nova Scotia, and 74.7% in Ontario. These results challenge the 

policy orthodoxy of targeting hospitals in isolation: even hospitals with low internal inefficiency remain far from 

the input distance frontier due to systemic constraints imposed by higher tiers. 

This framework introduces the first empirical decomposition of persistent technical inefficiency across an entire 

national health system. While implemented in Canada, the approach is applicable to any universal healthcare 

system grappling with multilevel governance. It offers policymakers a diagnostic tool to benchmark efficiency 

accurately and design system-level reforms—realigning funding flows, simplifying administrative structures, and 

reducing institutional bottlenecks—to achieve meaningful gains in technical efficiency. 
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Unmasking and Rethinking Hierarchical Inefficiency in 

Healthcare Systems 

1. Introduction 

Healthcare systems worldwide are under mounting pressure to enhance efficiency amid rising demand, ageing 

populations, and fiscal constraints. Persistent inefficiencies undermine service delivery, inflate costs, and erode 

health outcomes, even in high-spending countries (Organization of Economic Co-operation and Development, 

2017; World Health Organization et al., 2018). International assessments suggest that a substantial portion of 

healthcare expenditures—estimated at up to 20–40%—could be attributed to inefficiency (Organization of 

Economic Co-operation and Development, 2017; World Health Organization, 2010)Yet, efforts to improve 

system performance often focus narrowly on the provider or hospital level, overlooking the structural origins of 

waste embedded across layers of governance. 

Conventional inefficiency measurement typically centres on technical efficiency at the point of service delivery 

(Andrews & Emvalomatis, 2024; Hollingsworth & Peacock, 2008; Jacobs et al., 2006). While these approaches 

are valuable, they often fail to capture the broader, hierarchical nature of inefficiency that arises across multiple 

administrative levels (Colombi et al., 2017; Eklom & Callander, 2020; Herr, 2008; Rosko & Mutter, 2008; 

Worthington, 2004). From national and regional decision-making to frontline hospital operations, inefficiency is 

not merely a localised issue but a cascading phenomenon rooted in governance structures, resource allocation 

mechanisms, and bureaucratic bottlenecks(Organization of Economic Co-operation and Development, 2017; 

World Health Organization et al., 2018). These inefficiencies accumulate as healthcare resources pass through 

administrative hierarchies, creating substantial waste before funds and services ultimately reach patients. 

Decisions made by provincial ministries, regional health authorities, and hospital management are deeply 

interconnected, creating a system in which inefficiency is not only generated locally but also inherited, 

compounded, and propagated through governance tiers. Despite growing recognition of inefficiencies within 

healthcare systems, existing studies have yet to conceptualise inefficiency as a structural phenomenon cascading 

across administrative layers, where each tier both generates and inherits inefficiency. 
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This study advances the understanding of healthcare inefficiency by introducing a hierarchical model of inherited 

and self-generated inefficiency. The framework explicitly decomposes observed inefficiency at each level—

provincial, regional, and hospital—into two components: inherited inefficiency, reflecting upstream governance 

and policy constraints passed down from higher levels; and self-generated inefficiency, arising from local 

operational failures within each administrative unit. By modelling inefficiency as a layered, interdependent 

process rather than a static attribute of individual hospitals, this approach reframes the locus of inefficiency within 

the entire health system architecture. 

The cascading nature of inefficiency can be illustrated through a stylised example: if a provincial authority 

allocates a $100 budget but loses 4% to bureaucratic friction, only $96 reaches regional authorities. Further 

regional inefficiencies may reduce the effective amount to $94 before reaching hospitals. After hospital-level 

inefficiencies, perhaps only $90 is converted into patient care. Thus, despite no gross mismanagement at the 

hospital, systemic inefficiencies upstream cause cumulative resource erosion. Such effects remain invisible under 

traditional models focused exclusively on the frontline. 

Canada’s decentralised healthcare system provides an ideal setting to empirically implement and test the 

hierarchical inefficiency framework. The division of responsibilities among federal, provincial, regional, and 

hospital levels (Canadian Institute for Health Information, 2014; Marchildon et al., 2020) creates natural layers 

through which inefficiency can flow. Provinces control health budgets and set regulatory frameworks, while 

regional authorities coordinate service delivery, and hospitals operate under regional and provincial constraints 

(Canadian Institute for Health Information, 2014) . Despite universal coverage, the Canadian system experiences 

significant disparities in access, delayed funding flows, and variable efficiency across regions (Marchildon G, 

2013; Sutherland & Crump, 2013) - patterns consistent with inefficiency propagation across administrative levels. 

Existing literature has increasingly acknowledged the complexity of health system inefficiencies (Lipsitz, 2012; 

Renger et al., 2017). Cascading failures in healthcare delivery, such as administrative bottlenecks, delays in patient 

transitions, and preventable adverse events, often originate upstream and intensify at the point of care (Baker et 

al., 2004; Bruce et al., 2013). Yet few studies have formally distinguished between inefficiencies generated at a 

given level versus those inherited from above. This study fills that gap by estimating distinct inefficiency 

components at the provincial, regional, and hospital tiers within a single integrated framework. 
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The hierarchical model is implemented using a hierarchical Bayesian estimation strategy, allowing for flexible 

modelling of inefficiency transmission between tiers while accounting for uncertainty (Gelman et al., 2013, pp. 

101 - 132). This approach not only quantifies inefficiency at each administrative layer but also measures the 

proportion of inefficiency that is locally generated versus inherited. Empirically, it leverages detailed hospital-

level panel data from three Canadian provinces: Alberta, Nova Scotia, and Ontario. These provinces provide 

diverse administrative contexts, ranging from Alberta’s centralised health authority to Ontario’s recently 

restructured oversight system (Marchildon G, 2013; Sutherland & Crump, 2013). 

By disentangling inherited and self-generated inefficiencies, the hierarchical framework provides clearer 

diagnostic insights for policy interventions. Strategies that focus exclusively on hospital management 

improvements risk addressing only a fraction of the problem. Instead, meaningful efficiency gains require tackling 

inefficiencies embedded in higher-level governance structures. In the Canadian context, this suggests that reforms 

targeting provincial funding mechanisms, administrative workflows, and regulatory coordination may yield larger 

efficiency dividends than hospital-level initiatives alone. 

Although the empirical application focuses on Canada, the framework is broadly applicable to any multi-tiered 

health system, including those in the United States, Australia, Germany, and other federalised or decentralised 

contexts. In these systems, inefficiency cascades are likely pervasive, yet undermeasured. The hierarchical model 

offers a generalisable tool for identifying how and where waste is generated within complex healthcare structures. 

Recognising inefficiency as a cascading, systemic phenomenon represents a significant departure from standard 

efficiency evaluation in health economics. It highlights the need for governance-level reforms alongside 

operational improvements and offers a path toward more effective, system-aligned interventions aimed at 

reducing waste and improving patient care. In the following sections, the hierarchical modelling approach is 

developed in detail, and its empirical application to Canadian hospital data is presented to illustrate how this 

framework captures the complex dynamics of inherited and self-generated inefficiencies. 

2. Canadian Health System: A Natural Platform for Studying Inherited Inefficiency 

Canada's healthcare system, characterised by universal public coverage and decentralised governance, offers an 

ideal context for studying how inefficiencies propagate through multiple administrative tiers. Healthcare services 

are primarily funded by federal, provincial, and territorial taxes, with provinces responsible for organising and 
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delivering care. While the federal government contributes funding through mechanisms like the Canada Health 

Transfer, its direct role in service delivery is limited to specific populations (Health Canada, 2023a). 

The foundational principles of the Canada Health Act (1984)—public administration, comprehensiveness, 

universality, portability, and accessibility—shape the structure of provincial insurance plans, which must ensure 

medically necessary services are provided free at the point of care ("Canada Health Act" 1984). Yet, significant 

discretion remains at the provincial and territorial levels, enabling wide variation in healthcare organisation and 

performance (Boychuk, 2008).  

Beneath provincial governments, over 100 health regions, typically administered through Regional Health 

Authorities (RHAs), coordinate service delivery within defined geographic areas. While some provinces, like 

Alberta, have consolidated healthcare delivery under a single province-wide authority (Alberta Health Services, 

2024), others, such as Nova Scotia and Ontario, maintain more fragmented systems (Nova Scotia Health, 2023; 

Ontario Health, 2023). This structure, though designed to encourage local responsiveness, has also introduced 

variability in access, performance, and governance transparency (Marchildon et al., 2020)  

Despite relatively high spending levels, Canada's healthcare system underperforms on several efficiency metrics 

compared to other high-income countries. Systemic inefficiencies—ranging from administrative fragmentation, 

funding delays, and poor care coordination—contribute to an estimated 12,600 to 24,500 preventable deaths 

annually (Allin Sara et al., 2015; Canadian Institute for Health Information, 2014).  Variations in hospital 

efficiency across provinces and regions are shaped not merely by local management but also by upstream 

decisions on funding formulas, staffing allocations, and regulatory frameworks (Allin Sara et al., 2015; Sutherland 

& Crump, 2013). 

Particularly relevant for this study is the observation that structural inefficiencies often emerge from governance 

layers beyond the hospital itself. Health regions frequently encounter workforce shortages and infrastructural 

constraints that are rooted in provincial funding policies (Canadian Institute for Health Information, 2025). 

Likewise, federal and provincial-level administrative bottlenecks delay service innovation and impair hospital 

resource flow (Marchildon et al., 2020) . 



6 
 

Canada's decentralised but layered healthcare system creates natural tiers—federal, provincial, regional, and 

hospital—through which inefficiencies can be transmitted, inherited, and compounded. These features make it an 

exemplary empirical setting for developing and testing a hierarchical model of inherited and self-generated 

inefficiency. The next section introduces the model specification and empirical strategy used to disentangle 

inefficiency propagation across governance levels. 

3. Model Specification and Empirical Methodology 

Estimating inefficiency using a stochastic frontier model requires specifying an appropriate production 

relationship. This study employs an input distance function (IDF) to analyse how inefficiently hospitals utilise 

inputs relative to the most efficient use, given a fixed level of outputs. Moreover, the IDF does not require explicit 

knowledge of input or output prices and is particularly well-suited for contexts involving multiple inputs and 

outputs. 

To estimate this relationship, a translog functional form is utilised for its flexibility and ability to approximate 

complex production functions. Originally introduced by Christensen, Jorgenson, and Lau (1973), the translog 

input distance function provides a second-order approximation of an unknown production function, allowing it to 

capture diverse input substitution possibilities without imposing restrictive assumptions. This flexibility is 

especially advantageous in the hospital sector, where inputs such as labour, materials, and capital interact in 

complex ways to deliver healthcare services. 

Furthermore, the translog input distance function offers several practical benefits. First, it accommodates the 

simultaneous use of multiple inputs and outputs, particularly suited to healthcare systems where hospitals deploy 

a wide range of resources to deliver diverse services. Second, it enables the estimation of input elasticities and 

returns to scale, providing critical insights into how hospitals adjust their input utilisation in response to variations 

in output levels or technological progress. These features make it a powerful tool for analysing efficiency in 

complex production environments like healthcare (Christensen et al., 1973).  
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For a longitudinal dataset with 𝑃  inputs and 𝑄 outputs, the translog input distance function for hospital  𝑗 at 

time  𝑡  is given by: 
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In the above equation, ln 𝐷𝑗𝑡
𝐼  represents the natural logarithm of the input distance function for the hospital 𝑗 at 

time  𝑡. The term α denotes the global intercept, capturing baseline inefficiency across all levels. The term 𝑣௝௧ is 

the random noise component, assumed to be normally distributed with a mean of zero, capturing random shocks 

to the production system. Additionally, 𝛼௝, 𝛼௞ and 𝛼௟ represent hospital-specific, regional, and provincial 

intercepts, respectively.  

Each intercept represents a distinct layer of variation within the healthcare system. The hospital-specific intercept, 

𝛼௝, reflects factors such as patient demographics, hospital size, and available services, which vary significantly 

across hospitals. In contrast, the regional intercept, 𝛼௞, captures differences arising from region-specific factors, 

such as the allocation of resources, coordination of care, and regional policy implementations. These differences 

are particularly relevant in Canadian healthcare, where regional healthcare authorities manage key aspects of 

service provision, as highlighted by the Canadian Institute for Health Information (2014). The provincial intercept, 

𝛼௟, on the other hand, accounts for province-level factors, reflecting variations in health policies, funding models, 

and access to specialised services (Canadian Institute for Health Information, 2014; Marchildon G, 2013).  

On the input side, 𝑥௣௝௧ denotes the 𝑝 −th input for hospital 𝑗 at time 𝑡 with 𝑃  representing the total number of 

inputs. These inputs include resources such as labour, medical equipment, and supplies. The ∑ 𝛿௣ ln 𝑥௣௝௧
௉
௣ୀଵ  

represents the elasticities of the inputs. Interaction terms 
ଵ

ଶ
∑ ∑ 𝛿௣௦ ln 𝑥௣௝௧ ln 𝑥௦௝௧

௉
௦ୀଵ

௉
௣ୀଵ  capture the relationships 

between different inputs, where  𝑠 represents another input. The coefficient 𝛿௣௦ shows whether two inputs are 

complementary or substitutes, for example, whether increasing staffing levels reduces the need for additional 

medical equipment. Additionally, cross-product terms  ∑ ∑ 𝛾௣௤ ln 𝑥௣௝௧ ln 𝑦௤௝௧
ொ
௤ୀଵ  ௉

௣ୀଵ  show how specific inputs 

influence the production of specific outputs, with 𝛾௣௤ capturing the joint contribution of inputs and outputs. 
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The estimable form of the translog input distance function (IDF) for hospital 𝑗 at time 𝑡 can be rewritten and 

extended to account for persistent inefficiency at various hierarchical levels—namely, the provincial, regional, 

and hospital levels. This approach captures heterogeneity at each level while distinguishing persistent inefficiency, 

or inefficiency that does not change over time, at each hierarchical tier. This yields the following form: 
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where 𝑥௣௝௧
∗ =

௫೛ೕ೟

௫ುೕ೟
 , with 𝑥௉௝௧ is the normalising input.  

In addition to heterogeneity, the Eq. (2) model incorporates persistent inefficiency terms at each hierarchical level 

(𝑢௝ for hospitals, 𝑢௞ for regions, and 𝑢௟ for provinces) to capture inefficiency that remains fixed over time. 

Persistent inefficiency at the hospital level (𝑢௝) might reflect structural inefficiencies rooted in hospital practices, 

infrastructure limitations, or entrenched operational processes that do not change significantly year over year 

(Colombi et al., 2017; Mutter et al., 2008). At the regional level, persistent inefficiency (𝑢௞) could represent 

inefficiencies inherent to regional healthcare management or consistent issues in resource distribution that are 

difficult to alter over time (Allin Sara et al., 2016; Jacobs et al., 2006, p. 33). In contrast, the persistent inefficiency 

at the provincial level (𝑢௟ ) captures inefficiency arising from provincial healthcare policies or systemic issues in 

funding and regulation that impact the entire healthcare system within the province (Canadian Institute for Health 

Information, 2014; Marchildon G, 2013). These time-invariant inefficiencies reflect structural and policy-related 

factors that persist at each level. 

The estimated persistent inefficiency terms (𝑢(.)) at various levels in Eq. (2) represents input-oriented inefficiency, 

which assesses the extent to which healthcare providers use more inputs than necessary to deliver a given level of 

services. This measure reflects the proportional excess in input utilisation relative to the efficient input frontier, 

indicating how much input usage could be reduced while maintaining the same output level.  
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To incorporate the hierarchical effects, the model in Eq. (2) can compactly be written as: 

𝑧௝௧ =  𝒑௝௧
ᇱ 𝛽 +  𝑣௝௧ + 𝜓௝ + 𝜓

𝑘
+ 𝜓௟      (3)  

Here, 𝑧௝௧ =  − ln 𝑥௉ೕ೟
 represents the dependent variable for the hospital 𝑗 at time 𝑡, and 𝒑௝௧

ᇱ  is a row vector of 

independent variables, including the global intercept. The parameter vector 𝛽 contains the coefficients to be 

estimated. The term 𝑣௝௧ represents random noise, assumed to follow a normal distribution with mean zero and 

standard deviation of 𝜎௩.  

The hierarchical effects in Eq. (3) are represented by convolution terms that capture the interplay between time-

invariant heterogeneity and persistent inefficiency at different levels. At the hospital level, the Hospital-Level 

Convolution Effect (𝜓௝ = 𝛼௝ −  𝑢௝) combines the hospital-specific intercept (𝛼௝), which reflects unobserved, 

time-invariant heterogeneity such as structural or socio-economic factors beyond hospital management's control, 

with persistent inefficiency (𝑢௝). This inefficiency arises from entrenched operational shortcomings, infrastructure 

limitations, or systemic challenges specific to the hospital. Similarly, the Regional-Level Convolution Effect 

(𝜓௞ = 𝛼௞ −  𝑢௞) captures the regional intercept (𝛼௞), representing stable regional characteristics such as 

population density or resource allocation policies, along with persistent inefficiency (𝑢௞), which reflects 

inefficiencies in regional healthcare management or systemic resource distribution issues. At the provincial level, 

the Provincial-Level Convolution Effect (𝜓௟ = 𝛼௟ −  𝑢௟) incorporates the province-specific intercept (𝛼௟), 

reflecting broad, stable factors unique to each province, alongside persistent inefficiency (𝑢௟), which arises from 

inefficiencies linked to healthcare policies, regulatory frameworks, or systemic funding mechanisms that affect 

the healthcare system at the provincial scale. To ensure strictly positive values, all inefficiencies (𝑢௝, 𝑢௞, and 𝑢௟) 

are modelled hierarchically on the logarithmic scale, following log-normal distributions derived from normal 

distributions.  

In Eq. (3), the hierarchical effects—hospital, regional, and provincial—are modelled as independent, implying no 

interaction or dependency between the levels. However, both theoretical and practical considerations suggest that 

this assumption is unlikely to hold, as inefficiencies at one level often influence and are influenced by factors at 

other levels. For instance, provincial healthcare policies can shape regional resource allocation, affecting hospital-

level operations. This interdependence is a fundamental characteristic of healthcare systems, where decisions and 
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inefficiencies cascade across the hierarchy. Consequently, the model in Eq. (3), referred to as the Naïve 

Hierarchical Effects Model (Naïve), can be described as naïve because it does not account for these dependencies 

and interactions across levels. 

To address this limitation and incorporate hierarchical dependency, the model in Eq. (3) can be reformulated 

compactly as: 

𝑧௝௧ =  𝒑௝௧
ᇱ 𝛽 +  𝑣௝௧ + 𝜓௝     (4) 

In Eq. (4), the regional (𝜓௞) and provincial (𝜓௟) effects are not directly included but instead propagate through 

the hierarchical structure to influence hospital-level effects, encapsulated in 𝜓௝. By embedding higher-level 

influences within 𝜓௝, the model aligns with the organisational structure of healthcare systems, where provincial 

and regional factors converge at the hospital level. This reformulation captures the cascading nature of hierarchical 

dependencies, ensuring that inefficiencies at broader levels of the system are reflected in hospital-level effects. 

The hierarchical framework models unobserved heterogeneity across levels, beginning with the provincial level. 

At this level, the provincial intercept 𝛼௟  is assumed to follow a normal distribution with a mean of zero and a 

standard deviation of 𝜎ఈ೗ , representing province-specific variability. At the regional level, the regional intercept 

𝛼௞ is modelled as dependent on the provincial intercept 𝛼௟, with additional variability captured by 𝜎ఈೖ . Similarly, 

at the hospital level, the hospital-specific intercept 𝛼௝ depends on the regional intercept 𝛼௞, with variability scaled 

by 𝜎ఈೕ . These relationships are expressed mathematically as: 

𝛼௟  ~𝑁𝑜𝑟𝑚𝑎𝑙൫0, 𝜎ఈ೗
൯       (5) 

𝛼௞  ~𝑁𝑜𝑟𝑚𝑎𝑙൫𝛼௟ , 𝜎ఈೖ
൯       (6) 

𝛼௝  ~𝑁𝑜𝑟𝑚𝑎𝑙 ቀ𝛼௞ , 𝜎ఈೕ
ቁ       (7) 

In this hierarchical framework, inefficiency is modelled on the logarithmic scale, where the mean inefficiency at 

the preceding level directly influences each level's inefficiency. This approach, termed the Hierarchical 

Inefficiency Model (HIM), captures the nested dependency structure across provincial, regional, and hospital 

levels, aligning with the natural organisation of healthcare systems. 
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At the provincial level, inefficiency (𝑢௟) is modelled as a log-normal distribution derived from a normal 

distribution with mean 𝜇௨೗
 and standard deviation 𝜎௨೗

, representing province-level inefficiency. At the regional 

level, inefficiency (𝑢௞) is also modelled as log-normal, where the mean is determined directly by the logarithm 

of provincial inefficiency (log (𝑢௟)), reflecting the hierarchical relationship between these levels. Similarly, at the 

hospital level, inefficiency (𝑢௝) follows a log-normal distribution, with its mean determined by the logarithm of 

regional inefficiency (log (𝑢௞)).  

To properly reflect the hierarchical structure in the dispersion of inefficiency, we allow regional-level variability 

𝜎௨ೖ[೗]
 to depend on provinces and hospital-level variability 𝜎௨ೕ[ೖ]

 to depend on regions. In healthcare, regional 

inefficiency is shaped by province-wide policies, resource allocation, and infrastructure, leading to province-

specific differences in regional inefficiency variation. Similarly, hospital inefficiency varies within regions due to 

differences in funding, management, and patient demographics. By allowing regional dispersion to vary by 

province and hospital dispersion to vary by region, the model aligns inefficiency variability with the nested 

structure of healthcare systems, ensuring a more realistic representation of inefficiency propagation. 

 The hierarchical relationships are defined as: 

𝑢௟  ~expൣ𝑁𝑜𝑟𝑚𝑎𝑙൫log (𝜇௨೗
), 𝜎௨೗

൯൧       (7) 

𝑢௞  ~exp ቂ𝑁𝑜𝑟𝑚𝑎𝑙 ቀlog (𝑢௟), 𝜎௨ೖ[೗]
ቁቃ       (8) 

𝑢௝ ~exp ቂ𝑁𝑜𝑟𝑚𝑎𝑙 ቀlog (𝑢௞), 𝜎௨ೕ[ೖ]
ቁቃ       (9) 

Building on the HIM framework, the model is extended to incorporate Influence Factors that explicitly model the 

proportional transmission of inefficiency between hierarchical levels. This extended framework termed the 

Hierarchical Inefficiency Model with Influence Factors (HIM-IF), allows for the partial inheritance of inefficiency 

while accounting for localised adjustments at each level. By introducing these influence factors, the model better 

captures the interplay between provincial, regional, and hospital inefficiencies in healthcare systems. 
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In the HIM-IF, inefficiency is still modelled hierarchically on the logarithmic scale to ensure strictly positive 

values. At the provincial level, inefficiency (𝑢௟) is modelled as a log-normal distribution, derived from a normal 

distribution with mean 𝜇௨೗
 and standard deviation 𝜎௨೗

, representing province-level heterogeneity in inefficiency. 

At the regional level, inefficiency (𝑢௞) is also modelled as log-normal, but its mean is now determined by the 

logarithm of provincial inefficiency (log (𝑢௟)) scaled by a Provincial Influence Factor (PIF), denoted as 𝜙௟. This 

factor quantifies the proportional impact of provincial inefficiency on regional inefficiency while 𝜎௨ೖ[೗]
 captures 

the variability around this scaled mean, representing regional-level inefficiency heterogeneity. Similarly, at the 

hospital level, inefficiency (𝑢௝) follows a log-normal distribution, with its mean depending on the logarithm of 

regional inefficiency (log (𝑢௞))  scaled by a Regional Influence Factor (RIF), denoted as 𝜙௞.  Hospital-specific 

variability around this scaled mean is captured by 𝜎௨ೕ[ೖ]
, reflecting inefficiency heterogeneity among hospitals. 

The hierarchical relationships incorporating influence factors are expressed as: 

𝑢௟  ~expൣ𝑁𝑜𝑟𝑚𝑎𝑙൫log (𝜇௨೗
), 𝜎௨೗

൯൧       (10) 

𝑢௞  ~exp ቂ𝑁𝑜𝑟𝑚𝑎𝑙 ቀ𝜙௟ . log (𝑢௟), 𝜎௨ೖ[೗]
ቁቃ       (11) 

𝑢௝ ~exp ቂ𝑁𝑜𝑟𝑚𝑎𝑙 ቀ𝜙௞ . log (𝑢௞), 𝜎௨ೕ[ೖ]
ቁቃ       (12) 

The parameters 𝜙௟ and 𝜙௞, known as the Provincial Influence Factor (PIF) and Regional Influence Factor (RIF), 

respectively, measure the proportional transfer of inefficiency between hierarchical levels. These factors are 

constrained between 0 and 1, enabling partial inheritance of inefficiency while allowing for localised adjustments. 

A higher value of 𝜙௟ implies that regional inefficiency closely reflects the logarithmic magnitude of provincial 

inefficiency, with minimal attenuation. Conversely, lower values suggest greater regional autonomy or mitigating 

factors that reduce the influence of provincial inefficiency. Similarly, 𝜙௞, quantifies the degree to which hospital 

inefficiency aligns with the logarithmic magnitude of regional inefficiency, with higher values reflecting a 

stronger influence and lower values allowing for greater hospital-specific variability. 

It is important to note that a high value of 𝜙௟ does not imply that most of the inefficiency observed at the regional 

level is directly transferred from the provincial level. Instead, the PIF acts as a scaling mechanism, quantifying 
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the proportion of provincial inefficiency that influences regional inefficiency. The observed inefficiency at each 

level combines scaled contributions from higher levels and level-specific variability, reflecting both systemic 

influences and localised adjustments. 

This interpretation of 𝜙௟ and 𝜙௞  underscores their roles as proportional factors rather than sole determinants of 

total inefficiency. By capturing both inherited inefficiencies and localised heterogeneity, these parameters 

highlight the dynamic relationship between systemic influences and site-specific adjustments, providing a robust 

framework for understanding inefficiency propagation within hierarchical systems.  

In passing, it is important to emphasise the distinction in how total log inefficiency is conceptualised between the 

HIM and HIM-IF models. For the HIM model, the total log inefficiency at the hospital level is represented by 𝑢௝  

, which inherently captures inefficiencies at all levels (province, region, and hospital). This is because, in HIM, 

inefficiency flows directly through the logarithmic means from one level to the next, with each successive level 

absorbing and reflecting inefficiencies from higher levels. Thus, the inefficiency observed at the hospital level 

(𝑢௝) is an aggregate representation of inefficiencies from all preceding levels. 

Conversely, in the HIM-IF model, the total log inefficiency is computed as the sum of inefficiencies across all 

levels, i.e., 𝑢௟ + 𝑢௞ + 𝑢௝  . This distinction arises because, in HIM-IF, inefficiencies at each level (𝑢௟  , 𝑢௞   and 𝑢௝) 

are modelled separately with influence factors (𝜙௟ and 𝜙௞) to capture the proportional transfer of inefficiency 

between hierarchical levels. While these influence factors allow inefficiencies to flow to lower levels, they do not 

fully aggregate into a single value at the hospital level, as in HIM. Instead, each level retains its distinct 

contribution to the total inefficiency.  The summing approach in HIM-IF ensures that the total inefficiency reflects 

all sources of inefficiency—province, region, and hospital—that collectively impact hospitals.  

Bayesian estimation of HIM-IF model requires the specification of complete data likelihood that incorporates 

observed and latent variables. Let 𝒁 =  ൛𝑧௝௧ൟ denote the observed dependent variables for all hospitals and time 

periods. The complete data likelihood incorporates the observed data 𝑍, the latent variables for unobserved 

heterogeneity (𝛼௝ , 𝛼௞ , 𝛼௟) and inefficiencies (𝑢௝, 𝑢௞ , 𝑢௟) at each level. The parameter vector 𝜃 includes the 

following unknown parameters: 𝛽 (coefficients of the independent variables 𝑝′௝௧)  𝜙௞ (Regional Influence Factor, 

RIF), 𝜙௟  (Provincial Influence Factor, PIF), 𝜎௩ (standard deviation of the random noise in 𝑧௝௧), 𝜎ఈೕ
, 𝜎ఈೖ

, 𝜎ఈ೗
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(standard deviations of unobserved heterogeneity at the hospital, regional, and provincial levels), 𝜎௨ೕ[ೖ]
, 𝜎௨ೖ[೗]

, 𝜎௨೗
 

(standard deviations of log inefficiency at the hospital, regional, and provincial levels), and 𝜇௨೗
 (mean of the 

natural logarithm of inefficiency at the provincial level). 

The complete data likelihood can thus be expressed as follows: 

𝑃൫𝒁, 𝑢௝ , 𝑢௞, 𝑢௟ , 𝛼௝ , 𝛼௞ , 𝛼௟ห𝜽൯

=  𝑃൫𝑍ห𝛼௝ , 𝑢௝ , 𝛽, 𝜎௩, 𝑝′௝௧൯  × 𝑃 ቀ𝛼௝ቚ𝛼௞ , 𝜎ఈೕ
ቁ × 𝑃൫𝛼௞ห𝛼௟ , 𝜎ఈೖ

൯ × 𝑃൫𝛼௟ห𝜎ఈ೗
൯  

× 𝑃 ቀ𝑢௝ቚ𝑢௞, 𝜙௞, 𝜎௨ೕ[ೖ]
ቁ × 𝑃 ቀ𝑢௞ቚ𝑢௟ , 𝜙௟ , 𝜎௨ೖ[೗]

ቁ × 𝑃൫𝑢௟ห𝜇௨೗
, 𝜎௨೗

൯   (13) 

Expanding the likelihood in its parametric form, it becomes: 

𝑃൫𝒁, 𝛼௝, 𝛼௞ , 𝛼௟ , 𝑢௝ , 𝑢௞, 𝑢௟ , ห𝜽൯
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Along with the data likelihood, prior distributions are specified for each parameter in the model. All scale 

parameters, including those for residual noise and hierarchical heterogeneity, are modelled using half-normal 

distributions. Half-normal priors are particularly suitable for scale parameters because they enforce positivity 
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while avoiding boundary issues, as Gelman (2006) recommended. These priors allow for concentration near 

plausible values without being overly restrictive, balancing informativeness and flexibility. 

The prior for the residual noise standard deviation (𝜎௩) is specified as a half-normal distribution to enforce 

positivity while constraining the values to plausible magnitudes. The given prior 𝜎௩~𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0.01, 0.30), 

ensures concentration on small deviations, consistent with the log-transformed nature of the dependent variable, 

where large residual deviations are unlikely. Further, the standard deviation of the residual noise is restricted to a 

range between zero and the standard deviation of the observed data. This restriction helps maintain a balance 

between realism by grounding the parameter within plausible values derived from the data and flexibility by 

allowing the model to capture variability within this range. 

The standard deviation of persistent inefficiency parameters is modelled on the logarithmic scale, reflecting 

relative variability in inefficiency at different hierarchical levels of the healthcare system. These standard 

deviations increase progressively from provinces to regions to hospitals, aligning with the hierarchical structure 

and the expectation of greater variability at more granular levels. At the provincial level, where only three units 

are in the data, inefficiency variability is limited due to centralised policies and standardised practices. This is 

reflected in the prior 𝜎௨೗
∼ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.40), which imposes a smaller expected standard deviation. At the 

regional level, the number of regions slightly exceeds the number of provinces, and local management introduces 

additional variability. This is captured by the prior 𝜎௨ೖ[೗]
∼ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.55), allowing for moderate 

variability increases. Hospitals represent the largest group with the most significant variability due to 

infrastructure operational processes and resource allocation differences This is reflected in the prior                

𝜎௨ೕ[ೖ]
∼ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.70), which accommodates the highest level of inefficiency variability in the 

hierarchical system. 

The priors for the scale of the intercept terms at the provincial, regional, and hospital levels are modelled as half-

normal distributions: 𝜎ఈ೗
∼ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.10), 𝜎ఈೖ

∼ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.15) and 𝜎ఈೕ
∼

𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.20). These priors capture the hierarchical structure of the healthcare system, where 

heterogeneity is smallest at the provincial level due to centralised policies and fewer units, increases at the regional 

level with localised factors and slightly more units, and is largest at the hospital level due to the high number of 
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units and diverse operational and structural differences. The half-normal priors are weakly informative, enforcing 

positivity while allowing flexibility for the data to influence the posterior. If the actual heterogeneity at any level 

exceeds the prior expectation, the half-normal prior's broad support enables the model to adjust accordingly, 

accurately reflecting the variability observed in the data. 

Using the findings from Colombi et al. (2017) as a guide, where persistent inefficiency at the hospital level was 

found to have a mode of approximately 0.16, the prior for the province-level inefficiency log mean (𝑙𝑜𝑔𝜇௨೗
) is 

specified as 𝑁𝑜𝑟𝑚𝑎𝑙(−1.30, 0.50). This choice reflects the hierarchical nature of the healthcare system, where 

inefficiency at the provincial level encompasses broader systemic influences compared to hospital-level 

inefficiency. The hierarchical framework of this study estimates inefficiency across multiple layers—provincial, 

regional, and hospital—making it likely that inefficiency values are higher at broader levels due to aggregated 

systemic effects. Under this prior, the mean inefficiency at the provincial level is modelled flexibly to account for 

potential variability. Specifically: The sampled mean is approximately 𝑒ିଵ.ଷ଴ି଴.ହ×଴.ହమ
≈ 0.27  and a mode of 

𝑒ିଵ.ଷ଴ ≈ 0.27. This specification allows the model to balance prior knowledge with flexibility, ensuring that 

provincial inefficiency is realistically captured while accommodating the complexity of inefficiency propagation 

across hierarchical levels. The wider standard deviation (0.50) enables the prior to reflect the variability associated 

with provincial-level inefficiency while remaining informed by empirical observations. This approach provides a 

robust basis for estimating inefficiency at the provincial level, which is likely to exhibit greater values than 

hospital-level inefficiency due to its systemic nature. 

While Colombi et al. (2017) measured inefficiency at the hospital level, capturing both systemic and localised 

factors, the inefficiency modelled at the provincial level reflects broader systemic inefficiencies tied to centralised 

policies and resource allocation. Provincial inefficiency is expected to be lower than hospital-level inefficiency, 

as it forms the genesis of inefficiency that propagates through the hierarchy—regions and hospitals—each adding 

level-specific inefficiencies. This hierarchical propagation aligns with the model's structure. It justifies the prior 

assumption, ensuring it remains realistic, interpretable, and flexible to adapt to the observed data, even without 

direct empirical evidence. 
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Uniform priors are used for both 𝜙௞ and 𝜙௟, assuming that all values within the range [0, 1] are equally likely. 

This choice is consistent with a non-informative prior belief, providing no preference for any specific level of 

influence and allowing the data to inform the posterior distribution.  

The No-U-Turn Sampler (NUTS1), an efficient extension of the Hamiltonian Monte Carlo (HMC) algorithm, is 

used to estimate the posterior distribution. Sampling is conducted in CmdStanR2.  with five independent Markov 

chains, each generating 4000 samples, of which the first 2000 are used for warmup. The full model code is 

included in the supplementary materials. However, due to data-sharing restrictions imposed by the Canadian 

Institute for Health Information (CIHI), the underlying dataset cannot be made publicly available. 

4. Data & Summary statistics  

The dataset used in this study was obtained from the Canadian Institute for Health Information (CIHI) through a 

formal data request and spans the fiscal years 2011/2012 to 2017/2018. It includes hospital-level data from 

Alberta, Ontario, and Nova Scotia, forming an unbalanced panel consisting of 83 hospitals in Alberta, 13 in Nova 

Scotia, and 123 in Ontario. While some hospitals are observed throughout the entire study period, others are only 

observed for part of this timeframe, reflecting the typical structure of administrative health data. 

The dataset captures essential inputs and outputs relevant to hospital input-oriented inefficiency. Labour inputs 

are classified into three categories: Medical Personnel (MED), Management and Operational Support (MOS), and 

Unit Producing Personnel (UPP) compensation. These categories align with best practices outlined by Allin Sara 

et al. (2016) , emphasising the importance of including distinct labour input categories for understanding 

efficiency variations. MED compensation covers gross salaries, professional fees, and benefit contributions for 

medical personnel. MOS compensation reflects payments to administrative and operational staff managing 

hospital functions, while UPP compensation includes wages paid to direct service delivery staff such as nurses 

and technicians. 

Following McConnell et al. (2018, pp. 526 - 528), UPP compensation was adjusted relative to MOS compensation 

 
1 For detailed explanation of NUTS algorithm refer to Hoffman and Gelman (2014). 

2 CmdStanR (Command Stan R) is a lightweight interface to Stan for R users. For more information, refer  Gabry and Cesnovar (2023). Getting started 
with CmdStanR [Online]. Available: https://mc-stan.org/cmdstanr/articles/cmdstanr.html [Accessed]. 
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based on hourly wage differentials, producing a weighted aggregated measure (W_MOSUPP_EXP). This method 

reflects the relative productivity contributions of each labour input, ensuring alignment with the marginal 

productivity theory of resource allocation. 

Operational expenditures are also critical for assessing hospital inefficiency. Following the framework proposed 

by Cantor Victor John M and Poh Kim Leng (2018), the dataset includes for supplies, drugs, sundry expenses, 

equipment, and contracted-out services. They are expressed on a per-bed basis to standardise these costs and make 

them comparable across hospitals of different sizes. The price per bed for each category, such as supplies (SUP), 

drugs (DRG), contracted services (CON), and sundry expenses (SUN), is calculated by dividing the real 

expenditure by the number of Beds Staffed and In Operation (BEDS). 

A weighted average price per bed was calculated for supplies and drugs, as well as for contracted services and 

sundry expenses. The weighted aggregated values for supplies and drugs were derived using the weighted average 

price per bed multiplied by the total expenditure for each category, resulting in the weighted aggregated supplies 

and drugs expenditure (W_SUPDRG_EXP). Similarly, the weighted aggregated contracted services and sundry 

expenditures (W_CONSUN_EXP) were derived for contracted-out services and sundry expenses. These weighted 

variables will be used in the analysis to capture the relative importance of each category while accounting for 

hospital size. All expenditure figures are deflated using province-specific deflators to adjust for inflation. This 

adjustment ensures that comparisons over time reflect real changes in hospital expenditures rather than nominal 

increases due to inflation. 

Capital in healthcare typically refers to the physical assets such as buildings, equipment, and grounds. In 

production economics, capital is ideally measured as a flow, reflecting the ongoing use of these assets over time. 

However, due to the nature of healthcare services, it is not easy to measure capital flow directly. In this study, 

Following Colombi et al. (2017) and Jacobs et al. (2006, p. 31).Beds Staffed and In Operation (BEDS) are used 

as a proxy for capital, representing the number of beds available and staffed at the beginning of each fiscal year. 

This measure includes bassinets set up outside the nursery for infants other than newborns. Although it provides 

a convenient proxy for hospital capital, it is acknowledged as a simplified measure, representing capacity rather 

than the dynamic use of assets (Jacobs et al., 2006, p. 31). 
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The outputs in this study are measured using Resource Intensity Weight values, which capture the resources used 

for inpatient and outpatient care. The Total Acute Resource Use Intensity (ARU) is calculated by summing the 

Resource Intensity Weight values for all valid inpatient cases, providing a comprehensive measure of resource 

demand for acute care services. Similarly, the Total Outpatient Resource Use Intensity (ORU) is determined by 

summing the Resource Intensity Weight values for all valid outpatient cases, reflecting the resource utilisation for 

outpatient services. These Resource Intensity Weight values provide a standardised approach to assessing care 

intensity across cases, taking into account each patient's complexity and resource needs. This approach accounts 

for patient heterogeneity and resource demands, as emphasized by Tsionas (2006) and Jacobs et al. (2006, pp. 21-

27) ensuring that output measures reflect both the volume and complexity of care. Descriptive summary statistics 

for all key input and output variables, pooled across provinces and years, are presented in Table 1.  

Table 1 

Variable Observation Min 1st Qu Median Mean Std.Dev 3rd Qu Max 

MED 942 0.06 0.93 3.42 16.43 31.95 19.22 249.30 

UPP 942 2.74 9.62 21.86 92.82 146.75 111.06 762.49 

MOS 942 0.48 1.64 4.27 18.16 30.71 19.75 197.72 

SUP 942 0.31 1.55 4.57 21.19 37.24 22.96 217.39 

DRG 942 0.01 0.22 0.91 8.67 22.82 5.63 259.04 

CON 942 0.01 0.24 1.09 5.10 11.12 4.60 83.96 

SUN 942 0.13 0.62 1.66 12.89 53.80 7.22 704.36 

BEDS 942 15.00 38.00 84.50 225.12 306.66 281.00 1510.00 

ARU 942 97.58 816.73 2244.98 11620.76 19007.29 13696.43 90815.70 

ORU 942 58.47 637.88 1403.72 4304.84 6099.92 6172.36 43620.94 
 

All expenditure variables in Table 1 are expressed in millions of Canadian dollars. Capital is measured as the 

number of staffed hospital beds, while output variables (ARU and ORU) are reported in standardised Resource 

Intensity Weight (RIW) scores, which adjust for both patient complexity and service volume. The substantial 

variation across hospitals and provinces in both inputs and outputs underscores the suitability of this dataset for 

hierarchical Bayesian modelling. The unbalanced panel structure, with repeated observations nested within 

hospitals and provinces (and regions where applicable), enables the identification of multi-level sources of 

inefficiency. This structure supports the decomposition into inherited and self-generated inefficiency and allows 

a robust investigation of performance variation across Canada's federated health system. 
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5. Empirical Results  

The selection of the most appropriate model was guided by a comprehensive validation strategy incorporating 

two distinct evaluation approaches. The first approach involved Leave-One-Entity-Out Cross-Validation with a 

10-fold structure, which assessed how well models generalised to previously unseen hospitals (Aritz et al., 2024). 

The second approach utilised full-sample model selection criteria, including the Watanabe-Akaike Information 

Criterion (WAIC), the Bayesian Information Criterion (BIC), and Leave-One-Out Cross-Validation (LOO-

CV)(Gelman et al., 2014; Kohavi, 1995; Stone, 1974; Vehtari et al., 2017). These full-sample methods provided 

a deeper understanding of model complexity, predictive accuracy, and generalisation across all observations. 

While the 10-fold cross-validation strategy was designed to test the predictive accuracy of each model on holdout 

hospitals, WAIC, BIC, and LOO-CV assessed how well models fit the full dataset while penalising excessive 

complexity to ensure out-of-sample reliability. 

The 10-fold Leave-One-Entity-Out Cross-Validation framework systematically excluded approximately 17 

hospitals per iteration, ensuring that each model was evaluated on entirely unseen hospitals. The choice of 10 

folds balances computational efficiency with reliability, maintaining sufficiently large samples for training and 

testing while keeping processing times manageable (Liu & Rue, 2022). Across all three models, predictive 

accuracy remained stable, with minimal variation in Root Mean Square Error (RMSE), Mean Square Error (MSE), 

and Mean Absolute Error (MAE), suggesting that each model captured overall inefficiency patterns with similar 

precision. Specifically, the Naïve model recorded an RMSE of 3.3683, an MSE of 11.4471, and an MAE of 

2.6695, while the Hierarchical Inefficiency Model (HIM) produced an RMSE of 3.3682, an MSE of 11.4470, and 

an MAE of 2.6695. Similarly, the Hierarchical Inefficiency Model with Influence Factors (HIM-IF) yielded an 

RMSE of 3.3683, an MSE of 11.4471, and an MAE of 2.6695. 

Although these values are extremely close, they confirm that differences in inefficiency modelling do not 

negatively impact overall predictive accuracy. However, this raises an important question: if predictive accuracy 

remains largely unchanged, what is the benefit of structuring inefficiency hierarchically? The key advantage of 

models like HIM and HIM-IF lies in their ability to explicitly capture inefficiency propagation across hierarchical 

levels—a feature that is not reflected in traditional predictive statistics but is crucial for understanding how 

inefficiencies at provincial, regional, and hospital levels interact. While 10-fold cross-validation evaluated 

predictive accuracy across different hospital subsets, it did not incorporate model complexity penalties or 
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hierarchical inefficiency transmission. This made the WAIC, BIC, and LOO-CV criteria essential for the final 

model selection, as they provide a more refined assessment of model fit and complexity beyond simple predictive 

performance. 

However, despite the similarity in predictive accuracy, log-likelihood values revealed a key distinction in model 

fit. The Naïve model recorded the highest log-likelihood (17,510.62), outperforming both HIM (16,983.0) and 

HIM-IF (17,000.89). This suggests that the Naïve model better fits the overall dependent variable in an 

unpenalized sense. However, this higher likelihood is largely attributable to the Naïve model’s simpler structure, 

which does not impose hierarchical dependency constraints between provinces, regions, and hospitals. The HIM 

and HIM-IF models integrate hierarchical inefficiency propagation, redistributing variance across multiple levels, 

which inherently reduces log-likelihood due to additional model constraints. This reduction in log-likelihood is 

expected as more structured models introduce constraints that prevent overfitting to idiosyncratic patterns in the 

data. 

While log-likelihood provides an unpenalized measure of model fit, WAIC, BIC, and LOO-CV offer more refined 

evaluations by incorporating model complexity adjustments to avoid overfitting. Unlike the 10-fold cross-

validation approach, which validates models on held-out hospital data, WAIC, BIC, and LOO-CV were calculated 

using the full dataset, providing a global assessment of model performance across all observations. WAIC 

balances predictive accuracy with model complexity by penalising models that fit the data too closely, preventing 

overfitting. Under WAIC, the HIM-IF model exhibited the lowest penalised deviance, outperforming both the 

Naïve and HIM models, suggesting it was the best-performing model in terms of balancing accuracy and 

complexity. However, in calculating WAIC, the estimation of the effective number of parameters revealed that 

some were relatively large, indicating the presence of highly influential observations. In such cases, WAIC may 

not be fully reliable, and Leave-One-Out Cross-Validation (LOO-CV), a more robust alternative, was also 

considered. 

BIC, which applies a stronger penalty for model complexity than WAIC, favoured the HIM-IF model, which 

recorded the lowest BIC value (-48,829.43), outperforming the Naïve model (-19,999.60) and the HIM model (-

24,283.68). The superior performance of HIM-IF under BIC suggests that it strikes an optimal balance between 

flexibility and explanatory power, whereas the HIM model incurs a slightly higher penalty due to its additional 
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complexity. Since BIC applies a more substantial complexity penalty than WAIC, this result indicates that HIM-

IF achieves the most efficient trade-off between model parsimony and fit. 

Leave-One-Out Cross-Validation (LOO-CV) estimates how well a model is expected to predict unseen data by 

systematically omitting one observation at a time, refitting the model to the remaining data, and then predicting 

the left-out observation. This process provides a robust measure of generalizability while preventing overfitting. 

The LOO-CV results are summarised using the expected log pointwise predictive density (ELPD), which 

measures how well a model predicts new data points while penalising overly flexible models. Among the three 

models, the HIM had the highest ELPD (set as the reference with an elpd difference of 0), indicating the best 

overall generalisation to new data. The HIM-IF followed closely (elpd difference = -27.3), while the Naïve model 

performed the worst (elpd difference = -23.5). A more negative elpd difference indicates slightly weaker 

predictive performance. The close performance between HIM and HIM-IF suggests that both models generalise 

well, with HIM demonstrating a slight advantage in stability. However, high Pareto 𝑘 diagnostic values revealed 

that some observations had a high influence on the results, meaning that a small subset of extreme data points 

contributed disproportionately to the model’s performance estimates. This indicates that while LOO-CV favours 

HIM slightly over HIM-IF, these results should be interpreted cautiously, particularly in cases where high-

leverage observations impact model rankings. 

While the HIM model performed best under LOO-CV, the HIM-IF model remains the preferred choice due to its 

superior performance under WAIC and BIC, both of which account for model complexity and parsimony. Unlike 

the Naïve model, which treats inefficiency as a hospital-level residual, and the HIM, which assumes full 

inefficiency inheritance across levels, the HIM-IF model provides a more balanced approach, capturing both 

inherited inefficiency and localised variation. 

Even though HIM optimises predictive performance, HIM-IF provides a more interpretable and theoretically 

robust framework for modelling inefficiency propagation. By aligning inefficiency transmission with real-world 

healthcare structures, HIM-IF is the most policy-relevant model, offering deeper insights into inefficiency sources 

at hospital, regional, and provincial levels. Thus, the HIM-IF model is selected as the final model for inefficiency 

estimation, as it provides the best balance between predictive performance and model complexity. While HIM 

achieves slightly better predictive generalisation, HIM-IF offers a more interpretable structure by explicitly 

capturing inefficiency propagation across levels, making it the most theoretically sound and policy-relevant 
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model. However, for transparency, results from both HIM and HIM-IF models are presented in Table 2, allowing 

for a comparative evaluation of their estimates. This ensures that policymakers and researchers can assess the 

trade-offs between model complexity and interpretability when analysing hospital inefficiency.  

In this study, input variables were normalised by their geometric mean and expressed in logarithmic form. This 

normalisation ensures that the first-order coefficients of the translog input distance function can be directly 

interpreted as elasticities at the mean of the data. Such an approach is particularly valuable in the translog 

framework, which accounts for nonlinear relationships and interactions through second-degree and cross-product 

terms. By adopting this normalisation strategy, the model provides a more flexible representation of hospital 

production technology while maintaining interpretability. A key feature of this study is the choice of numeraire 

input, where the weighted aggregated contracted services and sundry expenditure (W_CONSUN_EXP) is used to 

impose the homogeneity restriction. This ensures that all other input variables are expressed relative to 

W_CONSUN_EXP, allowing for a meaningful comparison of elasticities while maintaining the theoretical 

properties of the input distance function. 

Table 2. Posterior means, standard deviations and 95 credible intervals of the translog HIM-IF & HIM 
Model 

Variables Posterior Mean (SD) [95 credible interval] 

HIM_IF HIM 

𝜶 (global intercept) 0.300 (0.113) [0.120, 0.478] 0.342 (0.115) [0.157, 0.520] 

𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷) 0.023 (0.013) [0.002, 0.045] 0.023 (0.013) [0.001, 0.045] 

𝜷𝒍𝒐𝒈(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷) 0.360 (0.031) [0.310, 0.411] 0.360 (0.031) [0.309, 0.412] 

𝜷𝒍𝒐𝒈(𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷) 0.075 (0.015) [0.050, 0.099] 0.075 (0.015) [0.050, 0.099] 

𝜷𝒍𝒐𝒈(𝑩𝑬𝑫𝑺) 0.529 (0.023) [0.4941, 0567] 0.529 (0.024) [0.491, 0.567] 

𝜷𝒍𝒐𝒈(𝑶𝑹𝑼)  -0.253 (0.024) [-0.291, -0.214] -0.253 (0.024) [-0.292, -0.214] 

𝜷𝒍𝒐𝒈(𝑨𝑹𝑼) -0.452 (0.026) [-0.492, -0.408] -0.452 (0.025) [-0.491, -0.410] 

𝜷𝒕𝒓𝒆𝒏𝒅 0.001 (0.001) [-0.001, 0.003] 0.001 (0.001) [-0.001, 0.003] 

𝜷𝒍𝒐𝒈(𝑴𝑬𝑫_𝑬𝑿𝑷)𝟐  0.007 (0.004) [0.001, 0.014] 0.007 (0.004) [0.001, 0.013] 

𝜷𝒍𝒐𝒈(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷)𝟐  0.060 (0.044) [-0.011, 0.135] 0.060 (0.045) [-0.013, 0.134] 

𝜷𝒍𝒐𝒈(𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷)𝟐  -0.033 (0.011) [-0.051, -0.015] -0.034 (0.011) [-0.052, -0.015] 

𝜷𝐥𝐨𝐠(𝑩𝑬𝑫𝑺)𝟐  -0.079, (0.025) [-0.121, -0.037] -0.079 (0.026) [-0.122, -0.037] 

𝜷𝐥𝐨𝐠(𝑶𝑹𝑼)𝟐  -0.080 (0.014) [-0.104, -0.057] -0.080 (0.014) [-0.104, -0.057] 

𝜷𝐥𝐨𝐠(𝑨𝑹𝑼)𝟐  -0.156 (0.014) [-0.178, -0.133] -0.155 (0.014) [-0.178, -0.133] 

𝜷(𝐭𝐫𝐞𝐧𝐝)𝟐  -0.001 (0.001) [-0.003, 0.000] -0.001 (0.001) [-0.003, 0.000] 

𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷×𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷) -0.068 (0.026) [-0.110, -0.025] -0.068 (0.025) [-0.109, -0.026] 

𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷×𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷) 0.040 (0.011) [0.022, 0.058] 0.041 (0.011) [0.023, 0.058] 

𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷×𝑩𝑬𝑫𝑺) 0.016 (0.017) [-0.012, 0.043] 0.016 (0.017) [-0.012, 0.044] 
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𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷×𝑶𝑹𝑼) -0.004 (0.013) [-0.026, 0.017] -0.004 (0.013) [-0.026, 0.017] 

𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷×𝑨𝑹𝑼) -0.028 (0.011) [-0.046, -0.010] -0.028 (0.011) [0.023, 0.058] 

𝜷𝐥𝐨𝐠(𝑴𝑬𝑫_𝑬𝑿𝑷×𝒕𝒓𝒆𝒏𝒅) 0.005 (0.002) [0.002, 0.008] 0.005 (0.002) [0.002, 0.008] 

𝜷𝐥𝐨𝐠(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷×𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷) -0.081 (0.035) [-0.139, -0.023] -0.080 (0.036) [-0.139, -0.021] 

𝜷𝐥𝐨𝐠(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷×𝑩𝑬𝑫𝑺) 0.031 (0.061) [-0.069, 0.131] 0.032 (0.062) [-0.070, 0.135] 

𝜷𝒍𝒐𝒈(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷×𝑶𝑹𝑼) 0.111 (0.039) [0.047, 0.176] 0.111 (0.040) [0.046, 0.177] 

𝜷𝒍𝒐𝒈(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷×𝑨𝑹𝑼) -0.039 (0.035) [-0.097, 0.019] -0.039 (0.037) [-0.099, 0.021] 

𝜷𝒍𝒐𝒈(𝑾_𝑴𝑶𝑺𝑼𝑷𝑷_𝑬𝑿𝑷×𝒕𝒓𝒆𝒏𝒅)  -0.006 (0.004) [-0.013, 0.001] -0.006 (0.005) [-0.014, 0.001] 

𝜷𝒍𝒐𝒈(𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷×𝑩𝑬𝑫𝑺) 0.105 (0.022) [0.068, 0.142] 0.105 (0.022) [0.068, 0.141] 

𝜷𝒍𝒐𝒈(𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷×𝑶𝑹𝑼)  0.018 (0.020) [-0.015, 0.050] 0.018 (0.020) [-0.015, 0.050] 

𝜷𝒍𝒐𝒈(𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷×𝑨𝑹𝑼) 0.017 (0.018) [-0.013, 0.047] 0.017 (0.018) [-0.013, 0.047] 

𝜷𝒍𝒐𝒈(𝑾_𝑺𝑼𝑷𝑫𝑹𝑮_𝑬𝑿𝑷×𝒕𝒓𝒆𝒏𝒅) 0.002 (0.003) [-0.002, 0.007] 0.002 (0.003) [-0.002, 0.007] 

𝜷𝒍𝒐𝒈(𝑩𝑬𝑫𝑺×𝑶𝑹𝑼)  -0.121 (0.030) [-0.172, -0.072] -0.121 (0.031) [-0.172, -0.071] 

𝜷𝒍𝒐𝒈(𝑩𝑬𝑫𝑺×𝑨𝑹𝑼) 0.051 (0.029) [0.004, 0.099] 0.051 (0.030) [0.003, 0.100] 

𝜷𝒍𝒐𝒈(𝑩𝑬𝑫𝑺×𝒕𝒓𝒆𝒏𝒅) -0.004 (0.003) [-0.009, 0.001] -0.004 (0.003) [-0.009, 0.002] 

𝜷𝒍𝒐𝒈(𝑶𝑹𝑼×𝑨𝑹𝑼) 0.162 (0.025) [0.121, 0.202] 0.162 (0.024) [0.122, 0.202] 

𝜷𝒍𝒐𝒈(𝑶𝑹𝑼×𝒕𝒓𝒆𝒏𝒅 ) -0.005 (0.003) [-0.010, -0.001] -0.005 (0.003) [-0.010, -0.001] 

𝜷𝒍𝒐𝒈(𝑨𝑹𝑼×𝒕𝒓𝒆𝒏𝒅 ) 0.004 (0.002) [0.000, 0.008] 0.004 (0.002) [0.000, 0.008] 

𝝁𝒖𝒍
 -2.931 (0.483) [-3.726, -2.135] -3.064 (0.469) [-3.837, -2.284] 

𝝈𝒗 0.045 (0.002) [0.043, 0.048] 0.045 (0.002) [0.043, 0.048] 

𝔼 ቂ𝝈𝒖𝒋[𝒌]
ቃ 0.575 (0.420) [0.060, 1.382] 0.568 (0.414) [0.060, 1.363] 

𝔼 ቂ𝝈𝒖𝒌[𝒍]
ቃ 0.432 (0.324) [0.036, 1.050] 0.419 (0.317) [0.033, 1.033] 

𝝈𝒖𝒍
 0.315 (0.238) [0.025, 0.779]  

 
0.304 (0.236) [0.022, 0.758]  
 𝝈𝜶𝒍

 0.080 (0.060) [0.007, 0.196] 0.080 (0.060) [0.006, 0.194] 

𝝈𝜶𝒌
 0.060 (0.046) [0.006, 0.150] 0.059 (0.047) [0.005, 0.150] 

𝝈𝜶𝒋
 0.335 (0.032) [0.291, 0.394] 0.329 (0.031) [0.286, 0.383] 

Province Influence Factors   

𝝓𝑨𝑩  0.608 (0.250) [0.167, 0.966] - 

𝝓𝑵𝑺   0.498 (0.292) [0.045, 0.952] - 

 

 

A remarkable observation from the results is the similarity between the HIM-IF and HIM models in terms of 

posterior means and standard deviations across all estimated parameters. The global intercepts for HIM-IF (𝛼= 

0.300) and HIM (𝛼= 0.342) are nearly identical within their respective credible intervals. Likewise, the first-order 

input and output elasticities exhibit no substantial differences, with their 95% credible intervals overlapping 

entirely between the two models. 

This strong consistency suggests that the two specifications capture hospital production technology in a nearly 

identical manner, indicating that the estimated relationships hold consistently across specifications. The output 
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elasticities 𝛽୪୭୥(ைோ௎)and 𝛽୪୭୥(஺ோ௎) are negative due to the imposed normalisation of the input distance function, 

which ensures homogeneity. This transformation aligns with the theoretical expectation that the original input 

distance function is decreasing in outputs. 

Similarly, the positive input elasticities indicate that the input distance function is increasing in inputs, meaning 

that as hospitals allocate more resources—such as labour, supplies, and capital—their input requirements expand. 

This is a fundamental property of a well-specified input distance function, ensuring that an increase in any input 

results in a greater measured distance from the efficient frontier. The fact that input elasticities remain positive at 

the geometric mean of the data further confirms that the monotonicity condition is satisfied, reinforcing the 

validity of the model’s specification. 

Keeping up the focus of this study, we interpret the estimated parameters from the HIM-IF model, ensuring that 

the input distance function framework is correctly accounted for in the interpretation. Since the model follows an 

input-oriented approach, positive coefficients for inputs indicate that increasing these resources moves hospitals 

further from the efficient frontier, meaning that they contribute to inefficiency. Conversely, negative coefficients 

for outputs suggest that increasing output levels allows hospitals to become more efficient by reducing the required 

level of inputs to provide the same level of care. 

The negative coefficient for outpatient resource use (𝛽୪୭୥(ைோ௎)=-0.253) implies that as hospitals increase 

outpatient activity, the input distance function decreases—meaning hospitals can proportionally reduce their 

inputs less while maintaining the same output level. This indicates that higher outpatient volumes intensify input 

use, pushing hospitals closer to the efficiency frontier (i.e., less "slack" in inputs exists as outputs grow). 

Similarly, the larger negative coefficient for acute resource use (𝛽୪୭୥(ைோ௎)=−0.452) suggests that inpatient care 

imposes even stronger input constraints: As hospitals expand inpatient services, the potential to proportionally 

reduce inputs diminishes further. This aligns with the notion that inpatient care is more resource-rigid than 

outpatient care, requiring hospitals to operate with proportionally fewer input savings at higher volumes. 

Since RTS measures how outputs respond to proportional changes in inputs and the function is structured as an 

inverse relationship, that is  𝑅𝑇𝑆 =
ିଵ

ି଴.ଶହଷି଴.ସହଶ
≈ 1.42. This implies that a 1% increase in all inputs leads to an 

approximately 1.42% increase in total inpatient and outpatient resource use. The reciprocal nature of RTS in the 
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input distance function confirms that hospitals operate under increasing returns to scale, meaning that as inputs 

expand, output grows more than proportionally, reflecting greater input productivity at larger operational scales. 

All the first-order input coefficients with respect to the input distance function at the geometric mean are positive, 

which satisfies the monotonicity condition of the input distance function. This ensures that the function is 

increasing in inputs, meaning that as hospitals expand their resource use—whether through medical personnel, 

administrative costs, supplies, or bed capacity—their total input requirements rise, pushing hospitals further away 

in their input use from the efficient frontier. 

The coefficient for medical personnel expenditures (𝛽୪୭୥(ொ஽_ா௑௉)= 0.023) indicates that a 1% increase in the use 

of medical staff results in a 0.023% increase in total input requirements, pushing hospitals further from the 

efficient input frontier. However, the small magnitude suggests that increases in medical staffing contribute only 

marginally to overall hospital input expansion. This relatively low marginal effect of medical personnel suggests 

that hiring additional clinicians contributes less to inefficiency compared to expansions in administrative or 

physical infrastructure. 

Administrative expenditures (𝛽୪୭୥(ௐ_ெைௌ௎௉௉_ா௑௉) = 0.360) show a stronger effect, meaning that a 1% increase in 

administrative and operational staff use leads to a 0.36% rise in total input requirements. This highlights that 

greater reliance on administrative resources significantly contributes to hospital input expansion, further 

distancing hospitals from the efficient frontier. Similarly, supplies and drug expenditures (𝛽୪୭୥(ௐ_ௌ௎௉஽ோீ_ா௑௉)= 

0.075) also lead to higher input use, though their impact is smaller compared to administrative resource use. This 

highlights the need for cost-effective procurement and supply management, as increased use of medical supplies 

and pharmaceuticals adds to total input requirements but at a lower rate than labour and operational expenditures. 

The coefficient for hospital beds (𝛽୪୭୥(஻ா஽ௌ)= 0.529) is the largest among inputs, indicating that expanding bed 

capacity substantially raises input use. This underscores that hospitals must align bed expansion with patient 

demand to prevent unnecessary resource growth, reinforcing the importance of efficient capacity planning. The 

strong positive coefficient further implies that bed capacity is a major driver of input inefficiency, highlighting 
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the potential value of policies that encourage bed-sharing strategies or outpatient care substitution to improve 

resource use.  

Turning to second-order effects, the squared term for medical personnel expenditures (𝛽୪୭୥(ொ஽_ா௑௉)మ =0.007) is 

positive, indicating that as medical personnel use increases, its impact on total input requirements grows at an 

increasing rate. This means that beyond a certain point, additional medical staff contribute more to total input 

expansion than initially expected, potentially due to diminishing marginal productivity. Thus, hospitals must be 

cautious about over-reliance on increased medical staffing, as it may not yield proportional service improvements. 

In contrast, the squared term for weighted supplies and drugs expenditures (𝛽୪୭୥(ௐ_ௌ௎௉஽ோீ_ா௑௉)మ = −0.033) is 

negative, implying that while greater use of medical supplies and drugs initially raises total input requirements, 

the rate of increase slows down as expenditure levels grow. This points towards the presence of economies of 

scale in procurement and usage, where bulk purchasing and optimised supply chains reduce marginal input 

expansion over time. 

Similarly, the negative squared term for hospital beds (𝛽୪୭୥(஻ா஽ௌ)మ −0.079) indicates that the effect of additional 

beds on total input use diminishes as more beds are added. It follows that hospitals may approach an optimal 

capacity where expanding bed availability does not proportionally increase input requirements, reinforcing the 

need for careful bed utilisation strategies to prevent excessive resource allocation. 

Several interaction effects provide valuable insights into how different hospital resources complement or 

substitute each other in determining total input use. These interactions highlight the interdependencies between 

labour, infrastructure, and service provision, shaping how hospitals allocate resources to maintain operational 

efficiency. The negative interaction between medical and administrative expenditures 

𝛽୪୭୥(ொ஽_ா௑௉×ௐ_ெைௌ௎௉௉_ா௑௉) =−0.068) suggests that higher staffing levels combined with increased 

administrative support improve resource utilisation. This implies that coordinating clinical and administrative 

teams more effectively reduces unnecessary input expansion, potentially streamlining hospital operations and 

making better use of existing resources. 

Conversely, the positive interaction between medical personnel and supplies/drug expenditures 

(𝛽୪୭୥(ொ஽_ா௑௉×ௐ_ௌ௎௉஽ோீ_ா௑௉)=0.040) indicates that higher medical staffing levels are associated with greater use 

of medical supplies and pharmaceuticals. That is, hospitals with larger medical personnel teams also consume 
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more treatment-related resources, potentially due to increased patient care intensity or inefficiencies in resource 

consumption. This interaction highlights the need for cost-conscious management of medical supply chains to 

ensure that growing staff levels do not lead to disproportionate input demands. 

Another key interaction emerges between medical personnel and acute care resource use 

(𝛽୪୭୥(ொ஽_ா௑௉×஺ோ௎)=−0.028), which is negative, indicating that hospitals with higher inpatient activity utilise 

medical personnel more efficiently. As inpatient volumes rise, the additional demand for medical personnel 

increases at a diminishing rate, suggesting better workforce allocation in hospitals handling larger inpatient 

caseloads. This reinforces the idea that high inpatient volume hospitals benefit from economies of scale in labour 

utilisation. 

The positive interaction between administrative expenditures and outpatient care (𝛽୪୭୥(ௐ_ெைௌ௎௉௉_ா௑௉×ைோ௎)

=0.111) suggests that higher administrative support leads to increased input use in outpatient services. This could 

stem from greater bureaucratic overhead in managing outpatient care, implying that hospitals must carefully assess 

the efficiency of administrative processes to avoid unnecessary input growth. In contrast, the negative interaction 

between hospital beds and outpatient services (𝛽୪୭୥(஻ா஽ௌ×ைோ௎) = −0.121) suggests that hospitals with greater bed 

capacity and higher outpatient volumes allocate inputs more effectively. This indicates potential operational 

synergies, where hospitals with more beds can manage outpatient flow more efficiently, reducing resource 

duplication and optimising patient transitions between inpatient and outpatient care. 

The positive interaction between hospital beds and acute care (𝛽୪୭୥(஻ா஽ௌ×஺ோ௎) =0.051) suggests that when both 

inpatient activity and bed capacity increase, total input use rises. This may reflect capacity constraints or resource-

intensive inpatient treatments, which require higher staffing levels and medical supply consumption as hospitals 

accommodate more complex inpatient cases. Also, the positive interaction between outpatient and acute care 

services (𝛽୪୭୥(ைோ௎×஺ோ௎) =0.162) suggests that hospitals experiencing simultaneous increases in outpatient and 

inpatient services require greater total inputs. This may be due to higher patient turnover, increased administrative 

burden, or shared resource constraints between the two service areas. The finding underscores the need for 
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carefully balancing inpatient and outpatient care to optimise resource allocation and prevent excessive input 

expansion. 

The posterior distribution for the linear time trend coefficient (𝛽୲୰ୣ୬ୢ= 0.001) spans zero, indicating no statistically 

credible evidence of system-wide technological progress or regress in hospital production during the study period. 

While the positive mean estimate might superficially suggest mild technological progress—where fewer inputs 

are required over time to produce the same output—the wide credible interval [−0.001, 0.003] renders this 

conclusion unreliable. Similarly, the squared trend term (𝛽(୲୰ୣ୬ୢ)మ = −0.001) offers no meaningful evidence of 

accelerating or decelerating technological change, as its 95% credible interval [−0.003, 0.000] includes zero. This 

overall pattern of temporal stability implies that, at an aggregate level, hospitals neither consistently improved nor 

declined in their input efficiency over time. 

Beneath this aggregate neutrality lie important input- and output-specific technological dynamics. Among inputs, 

the credibly positive interaction between medical personnel expenditures and time (𝛽୪୭୥(ொ஽_ா௑௉×௧௥௘௡ௗ)) = 0.005, 

CI [0.002, 0.008]) indicates that the input requirements for clinical staff increased systematically over time—

suggesting a form of technological regress in labor productivity. This may reflect rising administrative burdens, 

increasing case complexity, or diminishing marginal returns to workforce expansion, whereby each additional 

unit of medical labor contributes progressively less to output. In contrast, administrative expenditures 

(𝛽୪୭୥(ௐ_ெைௌ௎௉௉_ா௑௉×௧௥௘௡ௗ) = −0.006), pharmaceutical and supply costs (𝛽୪୭୥(ௐ_ௌ௎௉஽ோீ_ா௑௉×௧௥௘௡ௗ)= 0.002), and 

bed capacity (𝛽୪୭୥(஻ா஽ௌ×௧௥௘௡ௗ) = −0.004) all exhibited trend interactions with 95% credible intervals that include 

zero, suggesting no meaningful change in the technological contribution of these inputs over the study period. 

Turning to outputs, the significantly negative interaction between outpatient activity and time (𝛽୪୭୥(ைோ௎×௧௥௘௡ௗ )) 

= −0.005, CI [−0.010, −0.001]) provides credible evidence of technological progress in outpatient care. Over time, 

hospitals required fewer inputs per unit of outpatient service delivered, likely reflecting innovations such as 

telehealth, improved care coordination, and specialization in high-volume ambulatory procedures. By contrast, 

the marginally positive interaction between inpatient activity and time (𝛽୪୭୥(ைோ௎×௧௥௘௡ௗ )) = 0.004, CI [0.000, 

0.008]) suggests a potential decline in inpatient efficiency, though the evidence is not conclusive. This ambiguity 
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may reflect variation across hospitals—some achieving efficiency gains through lean practices, while others 

experienced rising input demands due to increasing patient acuity or complexity. 

The study now turns to the core empirical contribution of this study: measuring how inefficiency flows across 

Canada’s multi-tiered healthcare system. Tables 3 to 5 present a breakdown of inefficiency at three hierarchical 

levels—province, region, and hospital—for Alberta, Nova Scotia, and Ontario. These findings illustrate both 

inherited inefficiency, which flows down from higher administrative levels, and self-generated inefficiency, which 

arises within each layer. Together, they provide a comprehensive picture of how inefficiency accumulates and 

varies across the country’s healthcare governance architecture. 

Table 3: Hierarchical Decomposition of Inefficiency in Alberta’s Health System 

Province 
Base Provincial 

Inefficiency 

                                   

Province   

 

To Region                     

Region 
Regional Inefficiency 

(Base + Inherited) 

                                             

Region    

 

To Hospital                   

Hospital 

Inefficiencyϯ (Base 

+ Inherited) 

 Total 

Inefficiencyϯ 

(Province + 

Region + 

Hospital) 

Alberta       

(83 hospitals) 
7.25 % 4.17 % 

1 4.51 % 2.07 % 2.44 % 14.83 % 
2 4.18 % 1.57 % 1.80 % 13.75 % 
3 5.03 % 2.84 % 7.48 % 21.08 % 
4 5.13 % 2.89 % 3.80 % 17.04 % 
5 4.80 % 2.45 % 2.78 % 15.53 % 

                                   Grand average  4.73 % 2.36 % 3.66 % 16.45 % 
                                                                                    Grand Average Efficiency Score  83.55 % 
ϯ Averaged at Regional Level 

 

As presented in Table 3, Alberta emerges as the most inefficient of the three provinces, with a total system 

inefficiency of 16.45%, corresponding to an efficiency score of 83.55%. The province starts with a relatively high 

base provincial inefficiency of 7.25%, which reflects structural inefficiencies at the top of the system—such as 

bureaucratic rigidity, funding delays, or poorly coordinated provincial policies. However, this inefficiency is not 

confined to the provincial level. It is passed down through the administrative hierarchy as inherited inefficiency. 

The inefficiency transmitted from the province to its regions—measured here at 4.17%—represents the 

inefficiency that regional health authorities must contend with simply because they happen to operate within 

Alberta's provincial governance system. 

It is important to emphasise that this "passing down" of inefficiency does not reduce the inefficiency at the higher 

level. The province retains its full base inefficiency of 7.25%; the 4.17% inherited by the region is an additional 

burden that the regional level must absorb. In other words, the regional level begins its operations, which are 
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already laden with structural inefficiencies over which it has little or no control. On top of this inherited 

inefficiency, the region generates its own inefficiency—from internal management limitations, fragmented 

coordination, or delayed policy execution—bringing the total regional inefficiency to an average of 4.73%. The 

difference between the inherited portion (4.17%) and the total regional inefficiency (4.73%) represents the 

region’s self-generated inefficiency.  

A similar pattern unfolds as inefficiency cascades from the regional to the hospital level. Alberta’s average 

inherited inefficiency from region to hospital is 2.36%, meaning that before hospitals even begin functioning, they 

are already burdened with inefficiency from the above layers. Hospitals then add their own inefficiencies, such as 

inefficient discharge processes, staff shortages, or excessive diagnostics, resulting in an average hospital-level 

inefficiency of 3.66%. Together, the cumulative inherited inefficiency from province and region totals 11.98% 

(7.25% + 4.73%), which represents 72.8% of Alberta’s total observed inefficiency of 16.45%. This figure 

underscores the central argument of this study: the majority of observed hospital inefficiency stems from systemic 

governance failures at higher administrative levels. 

The total cumulative inefficiency reaches a striking 21.08% in Region 3, where hospital-level inefficiency peaks 

at 7.48%, clearly indicating a compounding process. These results show that inherited inefficiency can snowball 

when not absorbed or managed at intermediate levels, creating severe downstream inefficiencies at the point of 

care. 

Geographical and demographic factors further complicate Alberta’s capacity to absorb inefficiency. With a land 

area of over 661,000 km² and a sparse population density of just 5.7 people per km², the province faces formidable 

logistical challenges in delivering healthcare across vast and remote areas (Statistics Canada, 2021a). Specialised 

infrastructure, such as air ambulances (e.g., STARS), are often essential for reaching northern communities, but 

they also drive-up operational complexity and cost(Alberta Health, 2021). These structural realities magnify the 

effects of inherited inefficiency, especially when regional governance lacks the agility or resources to absorb the 

upstream burdens effectively. 
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Table 4: Hierarchical Decomposition of Inefficiency in Nova Scotia’s Health System 

Province 
Base 
Provincial 
Inefficiency 

                                   
Province   
 
To Region                     

Region 
Regional Inefficiency 
(Base + Inherited) 

                                             
Region    
 
To Hospital                   

Hospital 
Inefficiencyϯ (Base 
+ Inherited) 

 Total 
Inefficiencyϯ 

(Province + 
Region + 
Hospital) 

Nova Scotia    
(13 hospitals) 

7.02 % 3.41 % 

1 4.17 % 2.06 % 2.97 % 14.79 % 
2 4.10 % 2.00 % 2.76 % 14.48 % 
3 4.07 % 2.02 % 2.75 % 14.43 % 
4 4.03 % 2.01 % 3.15 % 14.84 % 
5 4.03 % 2.00 % 2.92 % 14.58 % 

                                   Grand average  4.08 % 2.02 % 2.91 % 14.63 % 
                                                                                    Grand Average Efficiency Score  85.37 % 
ϯ Averaged at Regional Level 

Table 4 presents the hierarchical decomposition of inefficiency in Nova Scotia’s health system, which contrasts 

Alberta on how inefficiency flows and is managed across administrative layers. Although the province begins 

with a similar level of base provincial inefficiency—7.02% compared to Alberta’s 7.25%—the way inefficiency 

propagates through the rest of the system diverges meaningfully. With a total system inefficiency of 14.63%, 

Nova Scotia’s efficiency score of 85.37% reflects a more controlled and less compounding accumulation of 

inefficiency across tiers. 

Where the difference becomes more subtle—but still meaningful—is at the regional level. Regions in Nova Scotia 

inherit an average of 3.41% inefficiency from the province, compared to 4.17% in Alberta. While both provinces 

transmit structural inefficiency to their middle tier, Nova Scotia’s regional burden begins slightly lighter. 

However, once self-generated inefficiency is considered, the distinction narrows. Nova Scotia’s total regional 

inefficiency averages 4.08%, while Alberta’s stands at 4.73%. That places the regional self-generated inefficiency 

in Nova Scotia at about 0.67%, whereas Alberta's is closer to 0.56% when comparing aggregate averages. So, 

rather than Nova Scotia’s regions clearly outperforming Alberta’s, we observe a more evenly matched middle 

tier, with both provinces exhibiting modest levels of regional inefficiency generation. The earlier impression of 

Nova Scotia’s superior regional governance doesn’t hold up fully when viewed through this lens. 

At the hospital level, Nova Scotia continues to demonstrate a more stabilised pattern of inefficiency. Hospitals 

inherit an average of 2.02% inefficiency from their respective regions—comparable to Alberta—but generate only 

2.91% in additional inefficiency on their own. By contrast, Alberta’s hospitals add 3.66% on average, and in some 

cases, far more. Alberta’s Region 3, for instance, records a staggering 7.48% hospital-level inefficiency, 
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underscoring how quickly inefficiency can escalate when upstream burdens meet internal mismanagement or 

structural stress. 

In Nova Scotia, no such extremes are observed. Hospital inefficiency remains contained across all five regions, 

fluctuating only slightly between 2.75% and 3.15%. This tight clustering suggests that while hospitals are not 

immune to inefficiency, they are generally operating within more consistent and manageable bounds. Unlike 

Alberta, where inefficiency at the hospital level can spike dramatically in response to inherited strain, Nova 

Scotia’s hospitals appear better equipped—or better structured—to prevent downstream inefficiency from 

compounding. 

The scale of the system may contribute to this. Nova Scotia has only 13 hospitals compared to Alberta’s 83, and 

such a smaller network inherently presents fewer coordination points, less institutional variability, and arguably 

clearer lines of accountability. But this is only part of the explanation. Nova Scotia’s population density—17.4 

people per km², Statistics Canada (2021b) is more than triple that of Alberta, which stands at just 5.7 people per 

km². These underlying geographic and demographic differences fundamentally shape the logistical context in 

which healthcare operates. In Alberta, the vast physical distances and dispersed population can amplify the 

difficulty of resource distribution, staff deployment, and infrastructure coordination. In contrast, Nova Scotia’s 

compact geography allows for tighter integration of services, more direct oversight, and reduced travel burdens—

all of which likely contribute to smoother hospital operations and steadier performance metrics. 

Importantly, the absence of outliers in Nova Scotia’s hospital-level inefficiency cannot be dismissed as a 

byproduct of system size alone. Smaller systems can still suffer from mismanagement and disorganisation 

(Giancotti et al., 2017). What distinguishes Nova Scotia is not merely its scale but how that scale interacts with 

geography and administration. The relatively high population density, combined with a modest number of 

hospitals, seems to support a system where inherited inefficiencies do not snowball uncontrollably. Hospitals, 

despite receiving structural burdens from above, manage to absorb them without significant internal escalation. 

Cumulatively, the inherited inefficiency from the provincial and regional levels in Nova Scotia totals 11.10% 

(7.02% + 4.08%), which represents 76.1% of the province’s total observed inefficiency of 14.63%. This further 
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reinforces the core argument of this study: inefficiency is primarily a systemic governance issue rather than a 

hospital-level problem alone. 

This points to a key policy implication: while reducing inefficiency at the top remains vital, provinces can also 

focus on fortifying hospital governance structures to contain the inefficiencies they inevitably inherit. Nova 

Scotia’s experience suggests that well-managed hospitals, operating within a tightly coordinated and 

geographically coherent system, can serve as effective barriers against the full transmission of systemic 

inefficiency, regardless of what occurs upstream. However, the question still remains: how much can be achieved 

by improving hospital operations alone, when a significant portion of inefficiency is already embedded at the 

provincial level? In Nova Scotia, as in Alberta, the largest single source of inefficiency originates from the 

provincial tier. This reinforces that hospital-level discipline, while necessary, cannot substitute for systemic 

reform. Addressing the structural inefficiencies at the provincial level—where funding delays, policy 

fragmentation, and administrative overhead are first introduced—is essential if efficiency gains at lower levels 

are to be sustained or scaled. Without tackling inefficiency at its source, downstream containment will always 

face a ceiling. 

Table 5: Hierarchical Decomposition of Inefficiency in Ontario’s health system 

Province 
Base Provincial 

Inefficiency 

                                   

Province   

 

To Region                     

Region 
Regional Inefficiency 

(Base + Inherited) 

                                             

Region    

 

To Hospital                   

Hospital 

Inefficiencyϯ (Base 

+ Inherited) 

 Total 

Inefficiencyϯ 

(Province + 

Region + 

Hospital) 

Ontario      
(123 hospitals) 

6.97 % 3.46 % 

1 4.14 % 2.08 % 2.76 % 14.47 % 
2 4.19 % 2.09 % 5.11 % 17.15 % 
3 4.12 % 2.08 % 2.87 % 14.58 % 
4 4.18 % 2.08 % 2.55 % 14.28 % 
5 4.14 % 2.04 % 2.73 % 14.44 % 
6 4.13 % 2.02 % 2.91 % 14.63 % 
7 4.17 % 2.07 % 2.86 % 14.62 % 
8 4.11 % 2.02 % 2.90 % 14.60 % 
9 4.11 % 2.02 % 2.62 % 14.28 % 
10 4.22 % 2.10 % 2.85 % 14.66 % 
11 4.16 % 2.07 % 2.64 % 14.36 % 
12 4.12 % 2.04 % 2.72 % 14.40 % 
13 4.19 % 2.09 % 5.02 % 17.04 % 
14 4.15 % 2.07 % 3.02 % 14.78 % 

Grand average 4.15 % 2.06 % 3.11 % 14.88 % 
Grand Average Efficiency Score 85.12 % 
ϯ Averaged at Regional Level 
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Table 5 presents the hierarchical decomposition of inefficiency in Ontario’s health system, the third and final 

province under review. As Canada’s most populous province, with nearly 16 million residents and the largest 

geographic area among the three (over 1,076,000 km²), Ontario offers a complex healthcare landscape. It operates 

with 123 hospitals, which is still notably more than Nova Scotia’s 13 or Alberta’s 83, spanning from highly 

urbanised southern regions to sparsely populated and logistically challenging northern territories. This mix of 

scale and geographic diversity adds a further dimension to how inefficiency is distributed and managed within its 

multi-tiered system (Statistics Canada, 2021c). 

Ontario begins with the lowest base provincial inefficiency of the three provinces, at 6.97%, compared to 7.02% 

in Nova Scotia and 7.25% in Alberta. While this difference is not large in absolute terms, it marks Ontario as 

starting with a slightly leaner provincial structure. However, as inefficiency flows down to the regional and 

hospital levels, the pattern becomes more complex. 

At the regional level, Ontario’s regions inherit an average of 3.46% inefficiency from the provincial tier—more 

than Nova Scotia (3.41%) but less than Alberta (4.17%). Once self-generated inefficiency is accounted for, total 

regional inefficiency averages 4.15%, placing Ontario between Alberta (4.73%) and Nova Scotia (4.08%). This 

implies that Ontario’s regions operate with a moderate level of internal inefficiency and only modestly add to 

what they inherit. Yet, when disaggregated by region, some variation emerges. For example, Regions 2 and 13 

show total inefficiencies of 17.15% and 17.04% respectively, indicating points in the system where upstream 

burdens and internal dynamics compound more visibly. 

At the hospital level, Ontario’s numbers again occupy a middle position. Hospitals inherit an average of 2.06% 

inefficiency from the regional tier, nearly identical to Nova Scotia (2.02%) and slightly below Alberta (2.36%). 

Hospital inefficiency, however, averages 3.11%, exceeding Nova Scotia’s 2.91% but staying below Alberta’s 

3.66%. As with regional inefficiency, the pattern here is mostly stable, but outliers appear—most notably in 

Region 2, where hospital inefficiency reaches 5.11%, and in Region 13 at 5.02%, suggesting certain clusters of 

operational or contextual strain. 

Taken together, Ontario’s total system inefficiency averages 14.88%, translating to an efficiency score of 85.12%. 

Cumulatively, the inherited inefficiency from the provincial and regional levels totals 11.12% (6.97% + 4.15%), 
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which represents 74.7% of Ontario’s total observed inefficiency of 14.88%. This highlights that, even in Ontario’s 

large and institutionally sophisticated system, inefficiency primarily originates upstream rather than locally. 

Ontario’s internal diversity partly explains this mixed picture. The densely populated south benefits from 

established infrastructure and administrative coherence(Statistics Canada, 2021c). In contrast, northern Ontario’s 

vast distances and rugged terrain—much like Alberta—create structural challenges for delivery, often requiring 

specialised services like air ambulances(Alberta Health, 2021; Statistics Canada, 2021a). As such, while Ontario’s 

average inefficiency remains moderate, its geographic heterogeneity continues to exert pressure on certain regions 

and hospitals more than others. 

It is also worth briefly noting Ontario’s performance through a different methodological lens. A DEA study of 

113 acute-care hospitals in Ontario by Chowdhury and Zelenyuk (2016) found that efficiency varies significantly 

across hospital size, teaching status, and geography. Interestingly, that study noted that small and rural hospitals 

were more variable in efficiency but not necessarily less efficient, challenging common assumptions that smaller 

units are automatically less productive. Furthermore, teaching hospitals were found to be relatively efficient, 

contrary to many studies in other jurisdictions. These findings, while not directly comparable to the hierarchical 

inefficiency measures used in this study, still reinforce the broader point: organisational and contextual factors—

not scale alone—determine efficiency at the hospital level. 

Ontario’s hospital sector, with over 120 institutions, reflects the complexity and opportunity that come with scale. 

On the one hand, the sheer number of hospitals allows for redundancy, flexibility, and greater institutional 

specialisation, which can help diffuse inherited inefficiencies and protect the system from systemic shocks. On 

the other hand, it introduces coordination challenges that may explain why certain regions (e.g., Regions 2 and 

13) still register elevated inefficiency levels despite the province’s otherwise favourable starting point. 

This brings us back to the core insight of this study. Even in Ontario, where hospital-level inefficiency is relatively 

contained and regional variation is modest, the base provincial inefficiency remains the single largest contributor 

to overall system inefficiency. The province may have more institutional capacity to absorb and manage that 

burden, but the structural inefficiencies introduced at the top continue to shape outcomes downstream. As in 
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Alberta and Nova Scotia, this underscores the limits of reforming only the frontline or regional levels. Provincial 

governance remains the critical leverage point for achieving sustainable reductions in system-wide inefficiency. 

This study offers, to the best of current knowledge, the first detailed empirical decomposition of inefficiency 

across multiple administrative tiers within a national healthcare system—not only in Canada, but within the 

broader healthcare efficiency literature. While prior research has assessed hospital-level or system-wide 

inefficiency using frontier methods such as Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis 

(SFA), no previous study has mapped how inefficiency is transmitted, inherited, and compounded across 

governance layers—from province to region to hospital—with this degree of granularity. The hierarchical 

inefficiency framework developed here provides a new lens for understanding where inefficiency originates, how 

it propagates, and where it is absorbed or amplified within the system. The analysis also identifies specific regions 

with disproportionately high cumulative inefficiency—regions that could serve as targets for more focused 

evaluation and policy intervention. However, the practical applicability of these findings is constrained by data 

confidentiality policies: the Canadian Institute for Health Information (CIHI), despite multiple formal requests, 

declined to release identifiers for the regions and hospitals included in the study. While understandable from a 

privacy and institutional standpoint, restricted access to granular identifiers limits the ability to directly translate 

research findings into operational reforms. Greater engagement with stakeholders and more flexible access 

policies would enhance the potential for empirical models such as this to contribute directly to system-level 

improvement efforts. 

6. Policy Implications 

The empirical results from the HIM-IF model provide important insights for policymakers seeking to enhance 

efficiency in Canada’s healthcare system. A central contribution of this study is the clear distinction between 

inherited and self-generated inefficiency across provincial, regional, and hospital tiers, offering a more precise 

diagnostic framework for targeted interventions. 

First, the findings indicate that system-level inefficiencies—particularly those originating at the provincial 

governance layer—are the largest contributors to overall waste. Provincial decisions on budget timing, regulatory 

design, and administrative structures significantly influence downstream hospital performance. Elasticities 
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estimated from the production frontier suggest that administrative expenditures disproportionately affect resource 

use (elasticity = 0.360), while hospital bed expansion is similarly resource-intensive (elasticity = 0.529). These 

results imply that hospital-level management improvements alone will have limited impact without reforms 

targeting systemic governance bottlenecks. Policies should prioritise streamlining funding flows, aligning 

incentives across administrative tiers, and ensuring that expansions in administrative and physical capacity are 

tightly linked to actual service demand. 

Second, regional health authorities (RHAs) introduce moderate but non-negligible levels of inefficiency. Their 

role as intermediaries is critical in either amplifying or mitigating governance failures inherited from higher levels. 

Some regions, particularly those serving remote or socially vulnerable populations, experience compounding 

inefficiencies when upstream and local challenges intersect. Although data privacy restrictions currently limit 

direct identification of specific health zones, the model highlights the importance of region-specific performance 

monitoring and adaptation. Regional authorities should be empowered to adjust inherited frameworks to local 

conditions, supported by tailored funding models and performance-based accountability systems. Hospitals, in 

turn, should strengthen internal coordination between administrative and clinical operations, as the negative 

interaction between administrative and medical expenditures suggests that integrated workflows can mitigate 

input growth pressures. 

Third, the results underscore the importance of data availability and analytic infrastructure in improving system 

responsiveness. Current limitations on access to regional and hospital-level identifiers hinder precise intervention 

targeting. While protecting patient and institutional confidentiality remains essential, establishing controlled-

access data environments would enhance policymakers' ability to deploy resources more effectively. Greater 

investment in integrated health information systems, real-time dashboards, and standardised efficiency metrics 

across administrative levels would further strengthen the transparency and agility of healthcare governance. 

Finally, the findings challenge the assumption that larger, more complex systems are inherently less efficient. 

Ontario’s relatively strong performance, despite its size, illustrates how risk pooling and coordinated resource 

management can offset inefficiencies typically associated with decentralised governance. However, geographical 

and infrastructural barriers, particularly in Alberta and northern Ontario, continue to impose structural 
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inefficiencies that require targeted responses. Investments in rural health infrastructure, flexible funding 

mechanisms for remote areas, and improved regional coordination will be essential to addressing these challenges. 

Overall, the HIM-IF framework provides a practical roadmap for reform by distinguishing inefficiencies that must 

be addressed at the system level from those that can be resolved locally. Efficiency improvement strategies must 

recognise the interdependence of administrative layers and prioritise governance reforms alongside operational 

enhancements to achieve sustainable performance gains. 

7. Concluding remarks 

Improving healthcare system efficiency remains a critical challenge for policymakers worldwide, particularly in 

decentralised and multi-tiered governance structures. This study addresses this challenge by introducing a 

hierarchical model that distinguishes between inherited and self-generated inefficiency across multiple 

administrative levels. 

Applying the model to panel data from Ontario, Alberta, and Nova Scotia over the period 2015–2019, the findings 

demonstrate that a substantial portion of hospital inefficiency originates upstream, at the provincial level, and is 

subsequently inherited by regional health authorities and hospitals. In Alberta, for instance, inherited inefficiency 

from provincial governance accounts for approximately 44% of observed hospital inefficiency. Similar patterns 

of inefficiency propagation are observed even in provinces with differing governance models, such as Ontario’s 

recentralised system and Nova Scotia’s smaller-scale health authority. These results highlight that systemic 

factors, rather than purely local management failures, are the primary drivers of inefficiency within Canada’s 

healthcare system. 

The results carry important implications for the design of healthcare reforms. Efficiency improvement efforts that 

focus solely on hospital management risk addressing only symptoms rather than structural causes. Meaningful 

gains require tackling inefficiencies embedded within provincial funding mechanisms, regulatory frameworks, 

and administrative processes. Regional and hospital-level interventions should be understood as complementary 

to, rather than substitutes for, upstream reforms. 

Although the empirical application focuses on Canada, the hierarchical inefficiency framework developed here 

broadly applies to other decentralised health systems, including those of Australia, Germany, and the United 
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States. In these contexts, cascading inefficiencies across administrative layers are likely pervasive yet under-

measured. This framework offers a generalisable approach for diagnosing where inefficiencies originate and how 

they can best be addressed. 

Several avenues for future research emerge from this work. Extending the framework to dynamic settings with 

evolving governance reforms would provide insights into the persistence or correction of inefficiencies over time. 

Incorporating quality-adjusted output measures would allow for a richer understanding of whether inherited 

inefficiencies translate into higher costs and poorer patient outcomes. Application of the model to other multi-

layered public service sectors, such as education or social care, could further validate its utility and extend its 

policy relevance. 

Recognising inefficiency as a cascading, systemic phenomenon rather than a hospital-centric issue represents an 

important shift for health economics. By providing a new methodological lens and empirical evidence, this study 

underscores that tackling healthcare inefficiency effectively requires reforms at both the operational and structural 

levels—an insight increasingly vital as health systems globally confront rising fiscal pressures, demographic 

change, and growing demands for accountability. 
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