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Abstract

We investigate whether the boosted HP filter (bHP) proposed by Phillips and Shi (2021)
might be preferred for New Zealand trend and growth cycle analysis, relative to using the
standard HP filter (HP1600). We do this for a representative range of quarterly macroeco-
nomic time series typically used in small theoretical and empirical macroeconomic models,
and address the following questions.

Tradition dictates that business cycle periodicities lie between 6 and 32 quarters (e.g.
Baxter and King, 1999) (BK). In the context of more recent business cycle durations,
should periodicities up to 40 quarters or more now be considered?

Phillips and Shi (2021) propose two stopping rules for selecting a bHP trend. Does it
matter which is applied? For growth cycle analysis, we propose other trend selection
criteria based on the cut-off frequency and sharpness of the trend filter.

Are stylised business cycle facts from bHP filtering materially differerent to those produced
from HP1600? In particular, does bHP filtering lead to New Zealand growth cycles which
are noticeably different from those associated with HP1600 or BK filtering?

HP1600 is commonly used as an omnibus filter across all key macroeconomic variables.
Does the greater flexibility of bHP filtering provide better alternatives?

We conclude that the 6 to 32 quarter business cycle periodicity is sufficient to reflect New
Zealand growth cycles and determine stylised business cycle facts and, for our represen-
tative 13-variable macroeconomic data set, using a bHP filter (2HP1600) as an omnibus
filter is preferable to using the HP1600 filter.
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1 Introduction

Globally and in New Zealand, there has been a lengthy tradition of using the standard
Hodrick-Prescott filter for business cycle analysis. See, for example, Hodrick and Prescott
(1997) (HP)1, Canova (1994, 1998), Pagan (1997), Harding and Pagan (2016), Hodrick
(2020) and, for New Zealand, Kim, Buckle and Hall (1994, 1995), Hall, Kim and Buckle
(1998), McCaw (2007), Hall and McDermott (2016), Hall, Thomson and McKelvie (2017),
Lienert (2018), and Hall and Thomson (2021).

There have also been a significant range of contributions advocating alternative filters
and providing critiques of the HP filter. These include Beveridge and Nelson (1981),
Nelson and Kang (1981), Nelson and Plosser (1982), Harvey and Jaeger (1993), King and
Rebelo (1993), Cogley and Nason (1995), Baxter and King (1999) (BK), Christiano and
Fitzgerald (2003) (CF), Hamilton (2018), Phillips and Jin (2021), and Phillips and Shi
(2021).

A recent forceful rejection of the HP filter has been Hamilton’s publication entitled “Why
you should never use the Hodrick-Prescott filter”. Hall and Thomson (2021) have recently
evaluated the use of Hamilton’s proposed OLS regression method (H84) in a New Zealand
business cycle context, and concluded that there is no material advantage in using the H84
regression over the HP filter for the purpose of presenting stylised business cycle facts;
nor does the H84 predictor improve on other forecast extension methods at the ends of
series, including the HP filter with no extension.

Also for New Zealand, in the context of assessing the robustness of business cycle facts
across alternative filters, Hall, Thomson and McKelvie (2017) have concluded that, on
balance, stylised business cycle facts from standard HP1600 filtering could be preferred
over those from BK, CF, and two loess (local regression) trend filtering methods.

So, while it has been widely acknowledged in the literature that under certain conditions
the HP filter can have limitations such as introducing spurious dynamic relations and
reflecting filtered values at the ends of series that are very different from those in the body
of the series, the HP filter has been and remains widely used in practice for trend and
cycle determination, including in macroeconomic models used to guide policy formation.2

However, Phillips and Jin (2021) have recently shown that standard settings for the HP
filter may not be adequate for completely removing stochastic trends in macroeconomic
time series, and may also tend to over penalise shorter time series. Against that back-
ground, Phillips and Shi (2021) have proposed the use of a boosted HP filter (bHP).

Phillips and Shi (2021) develop limit theory to show that the use of a bHP filter asymp-
totically removes trends involving unit root processes, deterministic polynomial trends
and structural breaks, and provide empirical results illustrating applications of bHP to

1As noted in Hodrick (2021, fn. 2), the original paper by Hodrick and Prescott (1980) was started in
1978. This work was released as Carnegie-Mellon University, Working Paper 451.

2For example, Phillips and Shi (2012, fn. 3) have established that, as of August 2020, Hodrick and
Prescott’s (1997) publication had over 9500 citations in Google Scholar, and Baxter and King’s (1999)
paper had nearly 4000 citations.
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macroeconomic time series exhibiting a range of key business cycle characteristics. They
also provide detailed responses to the critique of Hamilton (2018), present numerical and
empirical results that show a clear preference for the bHP filter over an autoregressive
approach for trend and cycle determination, and conclude that the HP filter and boosted
enhancements may validly be used as a helpful empirical device for trend and cycle de-
termination.

Specifically, bHP is proposed as an iterative HP algorithm, terminated by two data-driven
stopping rules. These are an augmented Dickey-Fuller (ADF) unit root test, and a new
version of the Bayesian information criterion (BIC) developed for use in this context.
Phillips and Shi (2021) consider the ADF approach to be appropriate for applications
such as business cycle analysis, where trend deviations are required to be stationary (or
near stationary), and they illustrate ADF for a p-value of 0.05. Their new version of
BIC takes into account sample fit and effective degrees of freedom after each iteration,
and is consistent with current usage of BIC-type information criteria as stopping rules
in econometric work. They show that both the ADF and BIC stopping rules lead to
significantly reduced mean squared errors relative to those emanating from the HP filter.

For many years, standard HP applications for quarterly macroeonomic time series have
generally involved choosing λ to be 1600, not only for GDP variables but also for all
other major macroeconomic variables, and usually with no prior attention to either the
particular variable, country or length of time series. In contrast, applications of bHP
allow for choices to be made on which stopping criterion to adopt, whether to impose
a maximum number of iterations, and for applications using the ADF test what p-value
to specify. A potential advantage of the bHP algorithm is therefore that the volatility,
persistence, and cross correlation properties of heterogeneous macroeconomic time series
may not be solely dependent on a common value of λ and a single HP iteration, as
traditionally has been the case when HP1600 is used.

Against this background, we evaluate circumstances in which a bHP filter could be pre-
ferred for New Zealand business cycle analysis, relative to using an HP filter with stan-
dard setting of λ = 1600. We do this for a representative range of quarterly New Zealand
macroeconomic time series typically used in small theoretical and empirical macroeco-
nomic models and address the following key questions.

Tradition has dictated that business cycle periodicities lie between 6 and 32 quarters (e.g.
Baxter and King, 1999). In the context of more recent business cycle durations, should
periodicities of up to 40 quarters or more now be allowed for?

Does it matter which stopping rule (bHP-ADF or bHP-BIC) is applied? Are there other
criteria that might lead to better trend selection in the context of business cycle analysis?

Are stylised business cycle facts from bHP filtering materially differerent from those pro-
duced from HP1600? In particular, does bHP filtering lead to New Zealand growth cycles
which are noticeably different from those associated with HP1600 or BK filtering?

HP1600 is commonly used as an omnibus filter across all key macroeconomic variables.
Does the greater flexibility of bHP filtering provide better alternatives?

Section 2 makes it clear that we are principally concerned with those business cycles often
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termed growth or deviations-from-trend cycles. Section 3 provides our methodological
underpinnings. Empirical results are presented in Section 4, and Section 5 concludes.

2 What is the business cycle, and should its duration

lie between 6 and 32 quarters or 6 and 40 quarters?

Beaudry et al. (2020) have recently raised the possibility that post-war U.S. business
cycles may reflect periodicities of as much as 36 to 40 and possibly even 50 quarters. If so,
this could mean that business cycle analysis should allow for cycle durations of between
6 and (say) 40 quarters instead of the traditionally accepted definition of periodicities
sitting between 6 and 32 quarters utilised by Baxter and King (1997) and Stock and
Watson (1999), on the basis of work by Burns and Mitchell (1946).

Background to this possibility, and consistent with Baxter and King (1999, p 1) and
Stock and Watson (1999, fn. 4), is the Beaudry et al. (2020, fn. 14) observation that
National Bureau of Economic Research (NBER) chronology lists 30 complete cycles for
the U.S. since 1858, with the shortest full cycle having been 6 quarters, the longest being
39 quarters, and 90 percent being no longer than 32 quarters. However, Beaudry et al.
(2020) go on to suggest that a cut off of 32 quarters may no longer be appropriate, as the
two most recent NBER cycles have been 43 quarters and at least 40 quarters respectively.

More recently, Kulish and Pagan (2021) have concluded that there is little merit in the
Beaudry et al. (2020) possibility, and find that while Beaudry et al. (2020)’s limit cycle
model for U.S. post-war hours per capita does produce an oscillation of 9–10 years, the
model both fails to match the data at other frequencies and is restricted to looking only
for oscillations.3 Moreover, if such an oscillation exists, Kulish and Pagan conclude that
it accounts for less than 1 percent of the variance of the series.

In the context of this paper, the possibility raised by Beaudry et al. (2020) gives rise
to two questions: which form of business cycle should we be considering; and should
its duration be constrained to lie between 6 and 32 quarters or between 6 and (say) 40
quarters?

On the issue of which business cycle should be considered, one first needs to be clear on
the distinction between a classical business cycle and a growth cycle. A classical cycle
is associated with the pioneering work of Burns and Mitchell (1946), and is a cycle in
the level (or log level) of an aggregate economic activity variable such as real gdp or
as reflected in the turning points and recessions published by the U.S. NBER. A growth
cycle would reflect fluctuations in an aggregate activity variable relative to an appropriate
trend in that series, is often referred to as a “deviations-from-trend” cycle, and its turning
points can therefore be observed from a wide range of detrending methods such as those
put forward by Hodrick and Prescott (1971) and many others.4

3For explanation of oscillations, cycles, and fluctuations, see Harding and Pagan (2016, ch. 2).
4For further explanation of classical and growth cycles,and the methodology associated with each, see

Zarnowitz (1992, ch. 7), Stock and Watson (1999, Section 2) and Harding and Pagan (2016).
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On the second issue, are empirical business cycle turning points derived from classical and
growth cycles materially different, and is this also the case for the average durations of
classical and growth cycles? For the U.S., Stock and Watson (1999, p 13) have concluded
that the distinction between classical cycle declines in aggregate activity and growth cycle
recessions leads to slight differences in official NBER peaks and local maxima in bandpass
filtered data. There are, though, somewhat greater differences for the average durations
of post-Second World War U.S. cycles, as their classical cycle lengths have averaged
around six years while the average length of their growth cycles has been around three to
four years, depending on the detrending method adopted. However, many business cycle
researchers seem to have failed to differentiate between classical and growth cycles for
their business cycle modelling and empirical findings. As Kulish and Pagan (2021, p 2)
put it: “It is therefore possibly somewhat odd that the Burns and Mitchell conclusion that
business cycles were of duration between 2 and 8 years has been translated by academics
into the proposition that this means one should study oscillations over the range of 2-
8 years in the series”. The Beaudry et al. (2020) analysis seems to come within the
latter category, as they utilise recent classical-type NBER durations to support their
consideration of a business cycle having periodicity of up to 40 or 50 quarters rather than
up to 32 quarters.

If there are “slight differences” between U.S. classical and growth cycle turning points,
and somewhat greater differences between U.S. classical and growth cycle average dura-
tions, is this also the case for New Zealand’s small open economy? Preliminary empirical
evidence from Hall and McDermott (2016, Figure 1 and Table 1), indicates that differ-
ences between New Zealand’s post-Second World War classical and growth cycles for real
gdp are considerable. This is the case for the number and dates of their turning points,
and also for their average cycle durations. For example, from the Hall and McDermott
(2016) classical cycle turning points reflecting the Bry and Boschan (1971) (BB) dating
algorithm, and their growth cycle turning points reflecting HP1600 detrending and BB
assisted dating, they concluded that there have been eight completed classical business
cycles of average duration 7.5 years, but 15 completed growth cycles with average dura-
tion of only four years. This classical average duration of 30 quarters sits just within the
Burns and Mitchell, and Baxter-King upper bounds of 6 to 32 quarters, but this growth
cycle average duration of only 16 quarters is a long way short of providing support for a
periodicity beyond 32 quarters.

Hence, given that there have been more than slight differences between average durations
for New Zealand’s post-Second World War classical and growth cycles, and that a principal
focus of this paper is on whether or not a boosted bHP filter is more appropriate for New
Zealand business cycle analysis than the frequently used HP1600 filter, the business cycles
referred to in this paper will be growth cycles and it is in this context that we address
the important empirical question of whether one should allow for cycle durations of up to
(say) 40 quarters rather than standard durations of 6 to 32 quarters.

The methodology underpinning our investigation is presented in Section 3, and the asso-
ciated empirical results are reported in Section 4.
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3 Methodology

Throughout this paper attention is restricted to non-seasonal (or seasonally adjusted)
quarterly macro-economic time series, although the methods and analyses considered are
readily adapted to other time frequencies (annual, monthly etc). As noted in Section 2,
our primary focus is on the estimation and analysis of growth cycles measured by the
deviations from a suitably chosen trend (the HP and BK trend filters are common choices).

Let yt be such a quarterly time series, possibly log transformed, and assume that yt admits
the additive decomposition

yt = gt + dt (1)

where gt is an unobserved trend and dt is the corresponding trend deviation. The decom-
position and its conceptual components are identified by assuming that gt is smooth, yet
follows the secular general movement of the time series yt, whereas dt has zero mean and
reflects shorter-term fluctuations and cyclical behaviour not accounted for by the trend.
Ideally gt should capture the local mean level and direction of the time series over a suit-
able time scale (medium to long term) and the shorter-term trend deviation dt should be
stationary or near-stationary.

The additive decomposition (1) has a long history dating back to Macaulay(1931), if not
earlier, and continues to enjoy wide-spread acceptance in practice. However the concepts
that underpin the identification of its components are not well-defined and remain an
active topic of discussion and research (see, for example, the Royal Statistical Society dis-
cussion paper by Kenny and Durbin (1982) and the wide-ranging discussion that follows,
as well as Harvey (1997)). This discussion has led to parametric structural time series
models based on (1) that have been developed by Akaike (1980), Harvey (1989), Kitagawa
and Gersch (1996) and Durbin and Koopman (2001) among many others.

Typically gt is estimated by a linear filter of the form

ĝt =
∑
s

wt(s)yt−s

where the filter weights wt(s) can be time-varying or time-invariant (wt(s) = w(s)) and
dt is estimated by

d̂t = yt − ĝt =
∑
s

w̃t(s)yt−s

where w̃t(0) = 1 − wt(0) and w̃t(s) = −wt(s) (s 6= 0). Many filters used in business
cycle analysis can be put into this general form including the HP filter (Hodrick and
Prescott, 1997), the BK filter (Baxter and King, 1999) and simple moving average trend
filters such as the Henderson filters (Henderson, 1916) used in the seasonal-trend-irregular
decomposition procedure X-11 and its derivatives (see Findley et al. 1998). More recently
Phillips and Shi (2021) have proposed an iterated form of the Hodrick-Prescott filter,
called the boosted-HP filter (bHP), which builds directly on and is a generalisation of
the HP filter. In these and almost all other cases, such trend filters reduce to symmetric
time-invariant moving average filters in the body of the series, with trends at the ends of
series estimated by asymmetric end filters, forecast extension or signal extraction using
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fitted parametric models. For any chosen symmetric moving-average trend filter, forecast
extension provides a general technique for extending the trend to the ends of series (see
Hall and Thomson (2021) for a discussion).

Here we focus on the performance and properties of the symmetric time-invariant moving-
average linear filters that underpin the bHP filter in the body of the series. These central
moving-average filters define the nature of the historic trend in the body of the time series
which is unaffected by the addition of new observations and any recent data revisions.
Key properties of these central filters will be evaluated and compared with those of the
HP filter and also those of the BK filter. The latter is a widely-used alternative to the HP
filter that is directly based on a band-pass filter closely tailored to the Burns and Mitchell
(1946) paradigm.

The central moving-average trend filters considered are of the form

ĝt =
∑
s

w(s)yt−s (2)

where the time-invariant filter weights w(s) are symmetric (w(s) = w(−s)) and sum to
unity (

∑
sw(s) = 1). These seemingly innocuous assumptions confer a number of useful

properties. Write

ĝt = g(L)yt =
∑
s

w(s)Lsyt

where L is the backward shift operator with Lyt = yt−1. Then the moving-average trend
filter g(L) given by (2)

P1: passes constant and linear deterministic time trends without distortion so that

g(L)(α + βt) = α + βt

for all choices of α and β;

P2: has trend deviation filter 1 − g(L) that renders I(1) time series stationary with
zero mean, and I(2) time series stationary (not necessarily with zero mean).

These simple properties have the following ramifications. If yt is corrected for a determin-
istic linear time trend estimated by ordinary least squares, then the OLS residuals

êt = yt − α̂− β̂t

are a time series that has zero mean and whose appearance will often appear stationary,
or near stationary, at least to a rough approximation. In particular, using property P1
above,

ĝt = g(L)yt = α̂ + β̂t+ g(L)êt

so that the estimated trend ĝt is the sum of the fitted OLS time trend plus the trend
of the approximately stationary OLS residuals. This observation was discussed in King
and Rebelo (1993) and shows that filtering yt is equivalent to filtering its OLS time trend
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residuals. It also provides a justification for considering the frequency domain properties
of the filter (2) which are normally only available for stationary (or near stationary)
time series that admit a spectral representation (a sum, or superposition, of sinusoidal or
Fourier components). A central concept in this regard is the transfer function of a linear
filter.

From the theory of stationary time series, any zero mean stationary time series xt has
spectral representation

xt =

∫ π

0

cos tω dU(ω) +

∫ π

0

sin tω dV (ω) =

∫ π

−π
e−itωdZ(ω) (3)

where the increments dU(ω), dV (ω) (or complex dZ(ω)) are mutually uncorrelated ran-
dom amplitudes whose size (root mean square) measures the degree to which the com-
ponent at angular frequency ω predominates. Note that ω = 2πf where f is frequency
in cycles per unit time, or cycles per quarter in the case of the quarterly series consid-
ered here. If mainly low frequency components are sizeable then the observed time series
would present a very smooth appearance, whereas sizeable components at mainly high
frequencies would lead to time series that display more oscillatory behaviour. Note that
(3) embodies two equivalent specifications with the one involving the complex exponential
(exp(iθ) = cos θ+ i sin θ) being the most mathematically tractable. This representation is
given in standard texts such as Hannan (1970), Brockwell and Davis (1991) among many
others.

From the spectral representation, the action of the linear filter (2) on xt is now given by

g(L)xt =

∫ π

−π
e−itωG(ω)dZ(ω) (4)

where
G(ω) = g(eiω) =

∑
s

w(s)eisω (|ω| ≤ π) (5)

is the transfer function of the filter. The filter modifies the original spectral representa-
tion of xt by replacing the spectral amplitudes dZ(ω) by G(ω)dZ(ω) so that frequency
components where G(ω) is very small will be suppressed or filtered out and those where
G(ω) are large will be amplified. If the transfer function G(ω) is written in polar form as

G(ω) = |G(ω)|eiθ(ω)

then |G(ω)| is the gain and θ(ω) the phase of the filter. The latter is a direct measure of
any phase shifts or leads and lags induced by the filter g(L). In the case of central moving-
average trend filters considered here, the symmetric weights w(s) ensure that G(ω) will
always be real with

G(ω) = w(0) + 2
∑
s>0

w(s) cos(sω)

and G(0) = 1 since the weights sum to unity. However G(ω) can still be negative.
Components at such frequencies will have phase θ(ω) = ±π and suffer phase shifts of half
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the period of the frequency component concerned (leads or lags of π/ω). This undesirable
behaviour is mitigated if there are few such cases and their gain |G(ω)| is close to zero. If
G(ω) is non-negative for all ω then G(ω) = |G(ω)| and the filter is said to be non-negative
definite.

Moving average trend filters of the form (2) are examples of low-pass filters which are
designed to pass frequency components below a given cut-off frequency and eliminate
the rest. In this context the ideal low-pass filter with cut-off frequency ω0 and transfer
function

Bω0(ω) =

{
1 (|ω| ≤ ω0)
0 (ω0 < |ω| ≤ π)

(6)

serves as a benchmark to categorise and measure the effectiveness of any given trend filter
g(L). The intervals |ω| ≤ ω0 and ω0 < |ω| ≤ π are called the pass band and stop band
respectively. In particular, the ideal low-pass filter that best approximates the transfer
function G(ω) given by (5) in terms of minimum mean-squared error can be shown to
have a cut-off frequency ωc that satisfies G(ωc) = 0.5 and, as a consequence, this value is
said to define the cut-off frequency of the filter g(L). Figure 1 shows the transfer functions
of the HP filter with cut-off frequency ωc = 2π/40 (a period of 40 quarters or 10 years),
the BK trend filter5 and the ideal low-pass filter, where the latter two filters have cut-off
frequencies of ωc = 2π/32 (a period of 32 quarters or 8 years). It can be seen that the
HP filter is a non-negative definite filter whereas the BK trend filter is not.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f =
ω

2π

Figure 1: Transfer functions of the HP filter (red) with cut-off frequency ωc = 2π/40 (a period
of 40 quarters or 10 years), the BK trend filter (green) and the ideal low-pass filter (black),
where the latter two filters have cut-off frequencies of ωc = 2π/32 (a period of 32 quarters or 8
years).

5The BK filter estimates the trend using a finite 25 point moving average filter approximation to the
ideal low-pass filter (6) with cut-off frequency ωc = 2π/32.
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Now consider Property P2 above. Following Baxter and King (1999) we note that

1− g(L) =
∑
s>0

w(s)(1− Ls)(1− L−s) = (1− L)(1− L−1)Ψ(L)

where Ψ(L) is a symmetric moving average filter and (1−L)(1−L−1) is the centred form
of the second-difference filter ∆2 (∆ = 1− L). In particular

Ψ(L) =
∑
s>0

s2w(s)Λ2s−1(L)

where Λ2s−1(L) is the symmetric triangular moving average filter given by

Λ2s−1(L) =
1

s2

s−1∑
j=−s+1

(s− |j|)Lj

which arises when a time series is smoothed twice with the simple averaging filter 1
s

∑s
j=1 L

j

(one forward pass and one backward pass). Thus the trend deviation is a weighted sum
of triangular smoothing filters applied to the series

(1− L)(1− L−1)yt = −L−1∆2yt

and ∆2yt will transform non-stationary I(1) time series to zero mean stationary time
series, and I(2) time series to stationary time series with a mean that will not necessarily
be zero. If ∆2yt is stationary with non-zero mean µ then the trend deviations (1−g(L))yt
will have mean µ

∑
s>0 s

2w(s) resulting in trend bias and violation of the the assumption
that the trend deviations should have zero mean. In such cases, the trend deviations can
be mean corrected with the mean deviation used to correct the bias in the level of the
trend. Alternatively, this problem can be circumvented if the trend deviation filter is
iterated (repeatedly applied) to give the filter (1− g(L))n where the number of iterates n
exceeds 1. This leads to higher-order differencing with the filter ∆2n applied to yt before
smoothing. When n = 2 for example, ∆4 will reduce I(1), I(2) and I(3) time series to
zero mean stationary time series and yield zero mean stationary trend deviations. In this
way iteration (or boosting) provides a mechanism for eliminating any stochastic trend
that might be present in the trend deviations (1 − g(L))yt. This observation underpins
the boosted HP filter (Phillips and Shi, 2021). However, since most economic time series
are typically I(1) or I(2) and rarely higher, there would appear to be little need for more
than two iterations in practice.

The following sections consider the properties of the HP filter, the bHP filter and a version
of the bHP filter tailored for business (growth) cycle analysis.

3.1 HP filter

The HP filter is widely used as a general-purpose empirical trend filter for quarterly
non-seasonal (or seasonally adjusted) macroeconomic time series that follow the additive

10



decomposition (1). Its original purpose was to decompose such time series into a growth
component (trend) and cyclical component (trend deviation), but its general utility and
applicability has seen it widely used in many different contexts. Here the trend gt is
estimated by ĝt which minimises the criterion

F + λS =
∑
t

(yt − ĝt)2 + λ
∑
t

(∆2ĝt)
2 (7)

where λ is a trade-off parameter balancing the fidelity F of ĝt to the data yt with the
smoothness S of ĝt. The smaller λ is the closer ĝt follows the data and the larger λ is
the closer ĝt is to a simple linear trend. For quarterly data λ is normally chosen to be
λ = 1600 (the standard Hodrick-Prescott filter), but other choices are possible, depending
on the balance of smoothness and fidelity required.

For observed data y = (y1, y2, . . . , yT )′, minimising (7) yields the solution

ĝ = Hy, H = (I + λD′D)−1 (8)

where ĝ = (ĝ1, ĝ2, . . . , ĝT ), I is the identity matrix and the (T−2)×T matrix D has typical
element Dij = 1 (j = i, i + 2), Dij = −2 (j = i + 1) and Dij = 0 otherwise. For large
T , the rows of H give the weights of the HP filter with the central rows corresponding to
the time-invariant weights in the body of the series and the remaining rows corresponding
to the weights of the time-varying asymmetric HP end filters. Hall and Thomson (2021)
show that the time-invariant weights in the body of the series are given by (2) with

w(s) = α sin(|s|φ+ ψ)ρ|s| (9)

where
ρ = 1/(

√
1 + δ +

√
δ), α = 1/

√
λ(ρ2 + 1/ρ2 − 2 cos 2φ)

and

δ =
1 +
√

1 + 16λ

8λ
, φ = tan−1

1 + ρ2

2
√
λ(1− ρ2)

, ψ = tan−1(2
√
λ tan2 φ)

with 0 < φ, ψ < π/2. These are simplified versions of the formulae given in McElroy
(2008) and De Jong and Sakarya (2016). When λ is 1600 the value of ρ is 0.8941 so the
weights w(s) decay slowly to zero as |s| increases. These weights define the central HP
filter.

Using the weights (9), the central HP filter can be shown to have the form

h(L) =
∞∑
−∞

w(s)Ls =
1

1 + λ(1− L)2(1− L−1)2
(10)

with transfer function

H(ω) =
1

1 + 4λ(1− cosω)2
(|ω| ≤ π) (11)
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Figure 2: Transfer functions of the HP filters with cut-off frequencies ωc of 2π/48 (red), 2π/40
(black), 2π/32 (green), 2π/16 (blue) and 2π/8 (cyan) corresponding to periods of 48, 40, 32, 16
and 8 quarters (12, 10, 8, 4 and 2 years).

where H(ω) is monotonically decreasing from unity at ω = 0 to 1/(1 + 16λ) at ω = π.
Thus the HP filter is a non-negative definite filter with no phase shifts and no ripples.
Moreover H(ω) has cut-off frequency ωc that satisfies H(ωc) = 0.5 and

λ = 1/
(
4(1− cosωc)

2
)
, ωc = cos−1

(
1− 1/(2

√
λ)
)

(12)

provided λ ≥ 1/16. When λ = 1600 the HP cut-off frequency ωc = 2π/39.7 (a period
of 9.9 years) which is close to 40 quarters or 10 years (λ = 1649 gives a 10 year period)
and the cut-off frequency ωc = 2π/32 (a period of 8 years or 32 quarters) corresponds
to λ = 677. These relationships are also given by Kaiser and Maravall (1999), Gomez
(2001), Harvey and Trimbur (2008) among others. In particular H(ω) has high contact
with H(0) = 1 over the pass band since the first three derivatives of H(ω) at ω = 0
are zero, and H(ω) is close to zero over the stop band when λ is large. These desirable
properties, among others, are inherited from the Butterworth filter of which the HP filter
is a special case (see Gomez, 2001, Harvey and Trimbur, 2003, for example).

Figure 2 shows the transfer functions of the central HP filter for the cut-off frequencies
ωc given by 2π/48, 2π/40, 2π/32, 2π/16 and 2π/8 (λ values of 3416, 1649, 677, 43 and
3 respectively) corresponding to periods of 48, 40, 32, 16 and 8 quarters (12, 10, 8, 4
and 2 years). As noted earlier, the HP filter with λ = 1649 is essentially the same as
the standard HP filter with λ = 1600. Evidently the degree to which HP filters are well-
approximated by ideal low-pass filters is a function of the cut-off frequency ωc with the
quality of the approximation better for lower values of ωc. One simple measure of the
quality of the approximation of a filter to an ideal low-pass filter is the steepness (slope)
of the filter’s transfer function at ωc. We call this measure the sharpness of the filter. For
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the HP transfer function H(ω) this is given by

βc = −1/(2 tan(ωc/2)) (13)

and the larger |βc|, the better the approximation. Note that when ωc is small 2π|βc| is
approximately 2π/ωc which is just the period of the cut-off frequency.

Since the HP filter is a central moving-average trend filter of the form (2) it has Proper-
ties P1 and P2 listed earlier. However more can be said. For any time series yt, note that
the HP trend deviation is given by

(1− h(L))yt = λh(L)(1− L)2(1− L−1)2yt

where (1− L)2(1− L−1)2 is the centred form of the fourth-difference filter ∆4. Thus the
HP trend deviation is an HP-smoothed version of the fourth-differences ∆4yt scaled by λ.
It will transform non-stationary I(1), I(2) and I(3) time series to zero-mean stationarity
and transform I(4) time series to stationarity, but with a mean that is not necessarily zero.
It also implies that the central HP trend filter h(L) passes constant, linear, quadratic and
cubic deterministic time trends without distortion.

As noted in Hall and Thomson (2021), the HP filter (8) and the central HP filter weights
(9) with transfer function (11) can be computed using alternative methods. King and
Rebelo (1993) show that the HP filter can be given a model-based interpretation with (1)
comprising a stochastic trend gt that satisfies

∆2gt = εt (14)

where εt, dt are mutually independent Gaussian white noise processes. Under these as-
sumptions ĝt can be computed using the Kalman filter and smoother (see Harvey and
Jaeger, 1993). Kaiser and Maravall (1999, 2012) use this model and Wiener-Kolmogorov
filtering to forecast missing values at the ends of the series (forecast-extension) and then
apply a computationally efficient form of the central HP filter (9) to the extended series.
Gomez (1999) shows that these three procedures are equivalent.

Furthermore, Mise et al (2005) build on King and Rebelo (1993) to show that the HP filter
is the optimal (minimum mean-squared error) estimator of gt in the body of the series for
two general classes of stochastic trend models. Let yt be given by (1) with components
that follow the models (d = 1 or d = 2) given by

∆dgt = C(L)εt, dt = C(L)(1− L)2−dηt (15)

where C(z) =
∑∞

j=0 cjz
j (c0 = 1,

∑∞
j=0 c

2
j < ∞) is non-zero for |z| ≤ 1 and εt, ηt are

mutually independent Gaussian white noise processes. The reduced models for yt are
given by

∆dyt = C(L)(1− 2ρ cos θL+ ρ2L2)ut

where ρ and θ are given by (9) and ut is Gaussian white noise. For both models (d = 1 or
d = 2) the central HP filter generates the optimal estimator of gt in the body of the series.
Suitable choices for C(L) allow for a more general class of data generation processes than
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just the case C(L) = 1 given in (14). In particular, yt follows an ARIMA(p, d, q) model
when C(L) = A(L)/(B(L)(1 − 2ρ cos θL + ρ2L2)) where the invertible moving average
operator A(L) has order q and the stationary autoregressive operator B(L) has order p.
These models are examples of the I(1) and I(2) economic time series models commonly
met in practice.

In summary, the central HP filter:

• is an infinite, symmetric, central moving average filter with coefficients w(s) given
by (9) that sum to unity and decay exponentially to zero;

• passes constant, linear, quadratic and cubic deterministic time trends without dis-
tortion;

• has a trend deviation filter that renders I(1), I(2), and I(3) time series stationary
with zero mean, and I(4) time series stationary (not necessarily with zero mean);

• is a non-negative definite filter (no phase distortion) with a transfer function that
is monotonically decreasing from 1 (ω = 0) to 1/(1 + 16λ) (ω = π);

• is a special case of the Butterworth filter and inherits many of its excellent properties;

• has a cut-off frequency ωc given by (12) which decreases as λ increases;

• has sharpness βc given by (13) whose magnitude (quality) increases as ωc decreases
(λ increases) with |βc| well-approximated by the period of ωc when ωc is small;

• can be calculated efficiently and conveniently by a variety of methods;

• generates the optimal trend estimator for a wide class of I(1) and I(2) data gener-
ation processes commonly met in practice.

These properties, among others, go some way to explaining why the HP filter has been
so widely used in macro-economic applications and more generally. However, despite
its wide-spread use in practice, the HP filter has attracted considerable criticism in the
academic literature. At one extreme, Hamilton (2018) makes a case for why you should
never use the HP filter, a case not universally accepted by others (see the discussions in
Phillips and Shi (2021), Hall and Thomson (2021) for example). At the other extreme,
Phillips and Jin (2021) review and further extend the theoretical properties of the HP
filter and show why it is often successful in practice. In addition to quantifying the
dependence of choice of λ on series length, they show that the standard HP filter with
λ = 1600 will often fail to include all of any stochastic trend present in the data, leaving
part of the stochastic trend in the HP trend deviation. The latter deficiency is directly
addressed by the bHP filter discussed in Section 3.2.

A key issue with the HP filter is that it is an infinite central moving-average trend filter
which is almost always applied to finite length time series. As with all central moving
average filters (finite or infinite) special techniques are needed to provide suitable trend
estimates at the ends of series. In such cases model-based methods provide a suitable
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solution with forecast extension being more generally appropriate. The latter provides
useful improvements over the standard HP filter defined by (7) and (8) (see Hall and
Thomson, 2021, and the references therein) and is expected to provide similar advantages
when applied to the bHP filter.

3.2 Boosted HP filter

Phillips and Jin (2021) show that a key deficiency of the standard HP filter is that it often
fails to completely remove stochastic trend components from the HP trend deviation.
They conclude that it is likely that remnants of stochastic trends are present, to some
degree, in the HP trend deviations (estimated cycles) of much applied business cycle
analysis. This observation provides a key rationale for the boosted HP filter (Phillips and
Shi, 2021) which builds on and extends the HP trend filter by iteration. The latter involves
repeated application of the HP trend deviation filter to the data until the resulting trend
deviation is free of any stochastic trend components that may be present.

As noted earlier, our focus is on the performance and properties of the bHP filter in the
body of the series. Here the bHP filter is given by

hn(L) = 1− (1− h(L))n (16)

with transfer function

Hn(ω) = 1− (1−H(ω))n (|ω| ≤ π) (17)

where n is the number of iterations, h(L) is the HP filter (10) and H(ω) is the HP transfer
function (11). When n = 1 the bHP trend is the same as the HP trend since h1(L) = h(L)
and

hn(L) = hn−1(L) + h(L)(1− hn−1(L)) (18)

for n > 1. This recursion shows that the bHP trend at iteration n is just the bHP trend
at the previous iteration n− 1 plus the HP trend of the bHP trend deviation at iteration
n − 1. This process repeats until the bHP trend deviation shows no evidence of any
stochastic trend. This trend deviation is then subtracted from the data to give the final
bHP trend.

Phillips and Shi (2021) set λ = 1600 and propose two stopping criteria for determining the
number of iterations needed. Both criteria are applied to the bHP trend deviations. The
first method applies the Augmented Dickey-Fuller test for unit roots with significance level
set to 0.05 and selects the first iteration n when the alternative hypothesis of stationarity
is accepted. The resulting filter is called the bHP-ADF filter. The second method is
based on minimising a specially constructed Bayesian information criterion (BIC) with the
resulting bHP filter called the bHP-BIC filter. An empirical evaluation of the properties
of the bHP-ADF and bHP-BIC filters is given in Section 4.1 where these filters are applied
to a selection of key New Zealand macro-economic time series.

However the bHP filters can also be regarded as a family of trend filters indexed by the
two parameters λ (λ > 0) and n (n a positive integer) with values that can be freely
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chosen by the economic analyst. The bHP trend filters are not especially designed for
business cycle analysis. Rather, they are a general family of trend filters whose fidelity to
the data and smoothness are controlled by suitable choice of n and λ. While Phillips and
Shi (2021) advocate λ = 1600 with n chosen by either the ADF or BIC stopping rules,
other criteria could also be used. An example of a criterion tailored for business cycle
analysis is given in Section 3.3.

The rest of this section considers the general properties of the central bHP trend filters in
the body of the series with these filters indexed by λ and n. Since the bHP filters are based
on the HP filter, these properties build on those for the HP filter given in Section 3.1.

The central bHP filter is an infinite, symmetric, central moving average filter of the form
(2) with weights given by (9) in the case n = 1 (the HP filter) and calculated recursively
from (18) for n > 1. The latter involves convolution of the HP filter with the bHP trend
deviation filter at the previous iteration. The bHP transfer function Hn(ω) given by (17)
is non-negative definite (no phase distortion) and decreases monotonically from ω = 0 to
ω = π with

Hn(0) = 1, Hn(π) = 1− (1− 1/(1 + 16λ))n.

From (17) it can be seen that for ω near 0, Hn(ω) is closer to 1 (the ideal) than H(ω).
Also Hn(π) ≥ H(π) for all n (it is approximately nH(π) for large λ) and Hn(π) increases
as n increases to a limit of H∞(π) = 1. Compared to the HP filter, the bHP filter is closer
to the ideal filter in the pass band of the HP trend filter, but further away in the stop
band. This is unlikely to be of any consequence when λ is large or n is small. However,
since the stop band of a trend filter is the pass band of the corresponding trend deviation
filter, use of the bHP filter could potentially lead to less accurate estimates of the cycle
when n is large and λ small.

In general, as n increases Hn(ω) approaches H∞(ω) = 1 and the bHP trend approaches
the original series (zero trend deviations). This behaviour is inconsistent with the normal
definition of a trend so stopping rules, penalty functions or other criteria, are necessary
to determine suitably parsimonious values for n. The transfer function Hn(ω) has cut-off

frequency ω
(n)
c given by

ω(n)
c = cos−1

(
1− 1/(2

√
λ(21/n − 1))

)
(19)

where Hn(ω
(n)
c ) = 0.5 and ω

(1)
c = ωc given by (12). The sharpness of Hn(ω) (the slope of

the transfer function at the cut-off frequency ω
(n)
c ) is given by

β(n)
c = −n(1− 2−1/n)/ tan(ω(n)

c /2) (20)

with β
(1)
c = βc given by (13). The values of ω

(n)
c monotonically increase with n and the

corresponding values of |β(n)
c | monotonically decrease provided n < log 2/ log(1+1/(16λ))

(17745 for λ = 1600). Table 1 gives numerical values of these quantities for the first 10
iterations in the case where λ = 1600. Here the period of the cut-off frequency decreases
from approximately 10 years (n = 1) to 8 years (n = 2), 7 years (n = 3), 6 years (n = 5
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Figure 3: Transfer functions of bHP filters with λ = 1600 for n = 1, the HP filter (black),
n = 2 (red), n = 11 (green), n = 26 (blue) and n = 381 (cyan) iterations with cut-off frequencies

ω
(n)
c corresponding to periods of 40, 32, 20, 16 and 8 quarters (10, 8, 5, 4 and 2 years).

Table 1: Values of the period 2π/ω
(n)
c (quarters) of the cut-off frequency and the absolute

sharpness (|β(n)c |) of the bHP filter with λ = 1600 for n = 1, . . . , 10 iterations.

n 1 2 3 4 5 6 7 8 9 10

2π/ω
(n)
c 39.7 31.8 28.3 26.1 24.6 23.4 22.5 21.7 21.1 20.5

|β(n)
c | 6.3 5.9 5.6 5.3 5.0 4.9 4.7 4.6 4.4 4.3

or 6) and less than 6 years (n > 5) with absolute sharpness deteriorating by more than
20% from its value for n = 1 (the HP filter) when n ≥ 5.

Figure 3 shows the transfer functions of the central bHP filters for λ = 1600 and n
iterations where n = 1 (the HP filter), n = 2, 11, 26 and 381 where these values of n

correspond to cut-off frequencies ω
(n)
c with periods 40, 32, 20, 16 and 8 quarters (10, 8,

5, 4 and 2 years). A measure of the quality of these low-pass filters as approximations

to ideal low-pass filters is given by the sharpness β
(n)
c (20). In this case these values (the

slopes of the transfer function at ω
(n)
c ) are -6.3, -5.9, -4.2, -3.4, and -1.7 respectively. The

first two, the HP filter with n = 1 and the bHP filter with n = 2, are essentially the same
with the quality of the others worsening as n increases and as expected from (20). Thus,
for λ = 1600, the HP trend filter and the bHP trend filter with n = 2 are of much the
same quality, but one (the HP filter) passes frequency components with periods greater
than 40 quarters (10 years) whereas the other passes frequency components with periods
greater than 32 quarters (8 years).

Like the HP filter, the bHP filter passes polynomial time trends and renders integrated
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time series stationary. From (16), the bHP trend deviation for any time series yt is

(1− hn(L))yt = (1− h(L))nyt = (λh(L))n((1− L)(1− L−1)2nyt

where ((1− L)(1− L−1)2n is the centred form of the iterated difference filter ∆4n and so
the central bHP trend filter hn(L) passes deterministic polynomial time trends of degree
less than 4n without distortion. For n = 2, for example, the bHP trend deviation filter
involves differencing the original series 8 times with the degree of differencing ramping
up rapidly for larger values of n. As a consequence, the bHP trend deviation filter will
transform non-stationary I(p) series (p < 4n) to zero-mean stationarity and transform
I(4n) time series to stationarity, but with a mean that is not necessarily zero. Whereas
the bHP trend deviation for n = 1 (the HP filter) may not always remove all the stochastic
trend present in economic data, the case n = 2 almost always will.

In summary, the central bHP filter:

• is an infinite, symmetric, central moving average filter with coefficients w(s) given
by (9) and (18) where these weights sum to unity and decay exponentially to zero;

• passes deterministic polynomial time trends of degree p < 4n without distortion;

• has trend deviation filter that renders I(p) (p < 4n) time series stationary with zero
mean, and I(4n) time series stationary (not necessarily with zero mean);

• is a non-negative definite filter (no phase distortion) with a transfer function that
is monotonically decreasing from 1 (ω = 0) to 1− (1− 1/(1 + 16λ))n (ω = π);

• has a cut-off frequency ω
(n)
c given by (19) which increases as n increases;

• has sharpness β
(n)
c given by (20) whose magnitude (quality) decreases as n increases;

• has much the same sharpness (quality) as the HP filter when n = 2 and λ = 1600,
with the HP filter having cut-off frequency 2π/40 (10 year period) and the bHP
filter (n = 2, λ = 1600) having cut-off frequency 2π/32 (8 year period);

• has trend deviation filter that will almost always remove any stochastic trend present
in economic data when n = 2 or greater, but may not when n = 1 (HP filter).

Like the HP filter on which it is based, the central bHP filter is an infinite central moving-
average trend filter that will need to be adapted for finite length time series. The current
implementation of the bHP filter (Phillips and Shi, 2021) recursively applies the standard
HP filter to the data. However there is no guarantee that this will improve on the
well-documented poor performance of the HP filter at the ends of series. This potential
deficiency of the bHP filter is not investigated here, but left for future research. Forecast
extension is a standard technique applied in such situations (see Hall and Thomson, 2021,
and the references therein) and is expected to provide similar advantages when applied
to the bHP filter.
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3.3 Boosted HP filter with constant cut-off frequency

In general, the bHP filter provides suitable trend estimation procedures for removing
any stochastic and deterministic trends present in data with these procedures placed
on a sound theoretical footing in Phillips and Jin (2021) and Phillips and Shi (2021).
However, in a business cycle context, the resulting trend filter may end up with a higher
cut-off frequency than expected from theoretical economic considerations and applied
econometric practice. If n is large (say n > 5) the bHP filter will lead to estimated cycles
that retain frequency components with periods less than 6 years, but suppress (filter out)
components with periods 6 years or greater. This is at variance with the discussion given
in Section 2 and the Burns and Mitchell (1946) paradigm.

To address this concern we now consider a sub-class of the bHP filters (bHPc) indexed
by the number of iterations n where the cut-off frequency is held fixed at some chosen
value ωc. In line with Section 2, we have in mind the case where ωc = 2π/32 (a cut-off
frequency of 32 quarters or 8 years), but other cut-off frequencies could be adopted such as
the cut-off frequency of the HP filter (40 quarters or 10 years) among others. To maintain
a constant cut-off frequency the value of λ used in the bHP filter will now need to depend
on n. This value is given by

λn =
λ1

21/n − 1
, λ1 =

1

4(1− cosωc)2
(21)

where n is the number of iterations (n ≥ 1) and ωc is the chosen cut-off frequency. Note
that λn increases with n and, for large n, is asymptotically equivalent to nλ1/ log 2. The
sharpness of the bHPc filter is given by

β(n)
c = −n(1− 2−1/n)/ tan(ωc/2) (22)

so that the absolute sharpness increases with n to a limiting value of (log 2)/ tan(ωc/2).
The ratio of the absolute sharpness to its limit is independent of the choice of ωc and
converges reasonably quickly to 1.

Table 2 gives the first 10 values of λn and the absolute sharpness |β(n)
c | for the bHPc filter

with cut-off frequency ωc = 2π/32 (32 quarter period) and also ωc = 2π/40 (40 quarter
period). The limiting absolute sharpness values are shown in each case. Note that the
absolute sharpness of the bHPc filter is approximately 85% of its limiting value when
n = 2, 90% of its limiting value when n = 3 and greater than 90% when n > 3. This
suggests that the associated transfer functions will be very similar for n ≥ 2.

From (17) and (21) the transfer function of the bHPc filter is given by

Hn(ω) = 1−
(

1− 1

1 + 4λn(1− cosω)2

)n
(|ω| ≤ π) (23)

which converges to the limiting transfer function

H∞(ω) = 1− 2−((1−cosωc)/(1−cosω))2 (|ω| ≤ π) (24)

19



Table 2: Values of λn and the absolute sharpness |β(n)c | for the bHP filter with constant cut-off
frequency ωc = 2π/32 (32 quarter period) and ωc = 2π/40 (40 quarter period) for n = 1, . . . , 10
iterations. The limiting values (n = ∞) for the absolute sharpness are also shown in each case
as are the absolute sharpness values for the sharpened HP filter sHP with λ = 677 (sHP677)
and λ = 1600 (sHP1600).

ωc = 2π/32
n 1 2 3 4 5 6 7 8 9 10 ∞ sHP677
λn 677 1635 2605 3579 4554 5529 6505 7481 8458 9434

|β(n)
c | 5.1 5.9 6.3 6.5 6.6 6.6 6.7 6.7 6.8 6.8 7.0 7.6

ωc = 2π/40
n 1 2 3 4 5 6 7 8 9 10 ∞ sHP1600
λn 1649 3982 6345 8717 11092 13468 15845 18223 20601 22980

|β(n)
c | 6.4 7.4 7.9 8.1 8.2 8.3 8.4 8.4 8.5 8.5 8.8 9.5

as the number of iterations n increases. Figure 4 shows these transfer functions when
the number of iterations is n = 1, 2, 3 and n =∞ for cut-off frequencies ωc = 2π/32 and
ωc = 2π/40 corresponding to periods of 32 and 40 quarters (8 and 10 years). As expected,
the bHPc filters with n ≥ 2 provide a good approximation to the limiting filter (24).

In practice it will be very difficult to differentiate the outputs of the bHPc filters when
n ≥ 2. This suggests that the only cases of practical importance for growth cycle analysis
are n = 1 and n = 2 with the latter only marginally different from (24). Of these two
filters the sharpest (the twice iterated case n = 2) is the obvious choice.

Other ways of using iteration to sharpen a trend filter while maintaining a fixed cut-off
frequency are available. As noted in Phillips and Shi (2021), the bHP filter with n = 2 is
an example of “twicing”, a data smoothing procedure advocated by Tukey (1977) which
also has its counterparts in the design of digital filters where sequential application of
filters (iteration) can lead to better sharpness properties. Kaiser and Hamming (1977)
(see also Section 6.6 of Hamming, 1989) explores “twicing” and develops a general tech-
nique for sharpening a given moving average trend filter g(L) of the form (2) using linear
combinations of its iterates g(L)n. For non-negative integers r and s, the sharpened filter
takes the functional form Prs(g(L)) where

Prs(x) = xs+1

r∑
k=0

(
s+ k

k

)
(1− x)k

is a polynomial in x of degree r + s + 1, Prs(0) = 0, Prs(1) = 1 and Prs(x) has zero
derivatives to order s at x = 0 and order r at x = 1 (implying Prs(x) has high contact to
Prs(0) = 0 near x = 0 and Prs(1) = 1 near x = 1). In particular, the transfer function of
Prs(g(L)) is Prs(G(ω)) where G(ω) is the transfer function of the moving average trend
filter g(L).

For the important symmetric case r = s

Pss(0.5) = 0.5, P ′ss(0.5) = (2s+ 1)

(
2s

s

)
(0.5)2s
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Figure 4: Transfer functions of bHPc filters with constant cut-off frequency ωc = 2π/32 (left
plot) and ωc = 2π/40 (right plot) corresponding to periods of 32 and 40 quarters respectively.
The number of iterations chosen is n = 1 (black), n = 2 (red), n = 3 (green), n = ∞ (cyan)
and only the lower frequencies are shown since the values of the transfer functions at higher
frequencies are negligible. The simple symmetric sharpening filter sHP is also shown (blue).

where P ′ss(0.5), the derivative of Pss(x) at x = 0.5, is monotonically increasing in s with
P ′00(0.5) = 1 and P ′ss(0.5) well-approximated by

√
1 + 4s/π. It follows that the transfer

function Pss(G(ω)) has the same cut-off frequency as G(ω), the transfer function of the
moving average trend filter Pss(g(L)) is based on, with sharpness given by

β̃(s)
c = (2s+ 1)

(
2s

s

)
(0.5)2sG′(ωc)

where ωc is the cut-off frequency of G(ω) and G′(ωc) is its sharpness. Moreover Pss(G(ω))
approaches the ideal filter with cut-off frequency ωc as s increases. Two important special
cases of these symmetric sharpening filters are P00(g(L)) = g(L) (no sharpening) and
P11(g(L)) = 3g(L)2 − 2g(L)3 which uses iterates of order 2 and 3. Kaiser and Hamming
(1977) refer to the latter case as simple symmetric sharpening which produces a 50%
improvement in the sharpness of G(ω) since P ′11(0.5) = 1.5.

Applying simple symmetric sharpening to the HP filter h(L) with cut-off frequency ωc
yields

P11(h(L)) = 3h(L)2 − 2h(L)3 = 3h2(L)− 2h3(L) (25)

where hn(L) is the bHP trend filter (17). This filter (sHP) is a linear combination of the
bHP filters with n = 2 and n = 3 and has the same cut-off frequency ωc as the HP filter
it is based on.6 A plot of the transfer function of the sHP filter is given in Figure 4 for

6All sharpened HP filters Prs(h(L)) can be written as linear combinations of bHP filters, but will only
have the same cut-off frequency as the HP filter h(L) when r = s.
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the two cases where the HP filter being sharpened has cut-off frequency ωc corresponding
to periods of 32 or 40 quarters. The sHP trend filter is essentially the same as the bHPc
filter with n = 3 in the pass band, but is significantly better than all bHPc filters in the
stop band (its sharpness values are given in Table 2). Whether this improvement in the
stop band translates to practical improvements in the estimate of the cycle is considered
in Section 4.

In summary, the central bHPc trend filter:

• is an infinite, symmetric, central moving average filter whose weights sum to unity
and decay exponentially to zero;

• passes deterministic polynomial time trends of degree p < 4n without distortion;

• has trend deviation filter that renders I(p) (p < 4n) time series stationary with zero
mean, and I(4n) time series stationary (not necessarily with zero mean);

• is a sub-class of the bHP filters indexed by number of iterations n and constant
cut-off frequency ωc;

• has values of λ given by (21) that increase with n and are asymptotically propor-
tional to n;

• has sharpness β
(n)
c given by (22) whose magnitude (quality) increases as n increases

with limiting absolute sharpness (log 2)/ tan(ωc);

• is a non-negative definite filter with transfer function (23) which converges to the
limiting form (24) as n increases;

• includes two primary cases of practical importance, n = 1 (HP filter) and n = 2
(bHP filter with n = 2), where the latter procedure is also referred to as “twicing”;

• can be further improved using simple symmetric sharpening (a linear combination
of the bHP filters with n = 2 and n = 3) to give the sHP filter (25) whose sharpness
exceeds that of all bHPc trend filters.

The stopping criteria proposed in Phillips and Shi (2021) for selecting the number of iter-
ations in the bHP filter have less relevance for the bHPc filter where the cut-off frequency
is constant and, in practice, only a few low values of n will be considered. However the
use of the Augmented Dickey Fuller test may assist with the choice of cut-off frequency
which is likely to remove more of any stochastic trend component the larger the cut-off
frequency becomes. Such issues will be discussed further in Section 4.1.

Throughout Section 3 our discussion has focussed on the properties of the various filters
(HP, bHP and bHPc) in the body of the series and does not address the important
case of the ends of series. However, as noted earlier, forecast extension is expected to
provide a suitable strategy in such cases.7 In Section 4 we present a variety of empirical
evaluations of selected HP, bHP and bHPc trend filters applied to representative New
Zealand macroeconomic time series.

7For some end of series results in the context of HP1600 and Hamilton (2018) filters, see Hall and
Thomson (2021).
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4 Results

Utilising the methodology presented in Section 3, we now report results from our em-
pirical evaluations of the bHP and bHPc trend filters, contrasting and comparing these
with results from the more traditional HP and BK filters. The key questions set out
in Section 1 are a primary focus. An evaluation of bHP trends and stopping rules is
given in Section 4.1, and stylised business cycle facts for HP, bHP and bHPc trend devia-
tions (estimated cycles) are compared in Section 4.2. Section 4.3 considers what material
differences, if any, can be discerned between bHP, HP and BK growth cycles.

Table 3: New Zealand quarterly macroeconomic data considered: code, start and end dates.

Code Start End Series
gdpe 1987q2 2019q4 log GDP (expenditure)
gdpp 1987q2 2019q4 log GDP (production)
cons 1987q2 2019q4 log consumption (private)
invr 1987q2 2019q4 log investment (residential)
gfcf 1987q2 2019q4 log gross fixed capital formation
gcon 1987q2 2019q4 log government consumption expenditure
nxsh 1987q2 2019q4 net exports share (%)
mtot 1987q2 2019q4 log imports goods & services
empl 1987q2 2019q4 log employment
unem 1987q2 2019q4 unemployment rate (%)
cpix 1987q3 2019q4 CPI inflation (annual % change)
cpin 1989q1 2019q4 CPI nontradables (annual % change)
nine 1987q3 2019q4 real 90-day Bank Bill rate (%)

Our quarterly, seasonally adjusted data set of key New Zealand macroeconomic variables
reflects variables typically included in theoretical or empirical macroeconomic models of
small open economies. They have been sourced from Statistics New Zealand (SNZ), the
RBNZ and Treasury, and are as documented in McKelvie and Hall (2012, Appendix C)
with the exception of the CPI non-tradables series which comes from the RBNZ. Series
were log-transformed with the exception of those containing negative observations (e.g.
net exports share, CPI inflation rate, real 90-day Bank Bill rate) or those already expressed
as a percentage (e.g. unemployment). Table 3 lists the series considered, their start and
end dates, and the code used to identify them in the sections that follow.

Throughout the rest of this paper we adopt the following notations for the particular HP,
bHP or bHPc filters used. References to HP1600, HP677, 2HP1600 or 5HP1600 filters,
for example, refer to HP or bHP filters where the number of iterations selected is the
numerical prefix (assumed to be 1 if missing) and the numerical suffix gives the value
of λ. Similarly, references to sHP677 or sHP1600 filters refer to the sharpened HP filter
given by (25) with the numerical suffix denoting the value of λ chosen. Furthermore, all
computations and graphical analysis were carried out in the R statistical environment (R
Development Core Team, 2004) and, in particular, we acknowledge use of the R function
BoostedHP(.) made available as part of Phillips and Shi (2021).
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4.1 An empirical evaluation of bHP trends and stopping rules.

Phillips and Shi (2021) propose two stopping rules for selecting the iterations of a bHP
trend filter both of which are applied to the bHP trend deviations. The bHP-ADF filter
uses the Augmented Dickey-Fuller test for unit roots with significance level set to 0.05 and
selects the first iteration when the alternative hypothesis of stationarity is accepted. This
stopping rule is considered appropriate for situations where stationary trend deviations
are deemed a prerequisite, such as for business cycle analysis. The bHP-BIC filter is based
on minimising a specially constructed Bayesian information criterion (BIC) which takes
into account sample fit and effective degrees of freedom after each iteration. Both filters
provide smooth trends that always fit the data at least as closely, if not more closely, than
the standard HP1600 filter on which they are based.

In this section an empirical evaluation of the properties of the bHP-ADF and bHP-BIC
filters based on the HP1600 filter is undertaken in a New Zealand context with the filters
applied to our seasonally-adjusted data set of 13 New Zealand macroeconomic time series.
The nature of the trends fitted is considered as is the stability of the stopping rules and
the number of iterations selected.

Figure 5 shows a selection of four of the New Zealand macroeconomic time series con-
sidered (log GDPE, log residential investment, unemployment and real 90-day bank bill
rate) with bHP-ADF, bHP-BIC and 2HP1600 trends superimposed. The latter (bHP
with n = 2 and λ = 1600) is chosen as a benchmark trend due to its excellent theoretical
properties (see Sections 3.2, 3.3) and its cut-off frequency ωc = 2π/32 corresponding to
a period of 8 years (32 quarters). As expected, the bHP-BIC trend always fits the data
best (has highest fidelity), with the bHP-ADF filter being the HP1600 filter (log GDPE,
log investment (residential), unemployment) or the 2HP1600 (90-day bank bill rate).

Table 4: Number of iterations selected by the bHP-ADF and bHP-BIC trend filters for each
of the New Zealand macroeconomic series considered.

gdpe gdpp cons invr gfcf gcon nxsh mtot empl unem cpix cpin nine
ADF 1 1 3 1 1 1 1 1 1 1 1 1 2
BIC 7 6 6 5 7 3 5 6 5 9 13 8 5

The number of iterations selected by the bHP-ADF and bHP-BIC trend filters for all 13
macroeconomic time series are given in Table 4. While the bHP-ADF trend filter almost
always selects the HP1600 filter, the exceptions being log consumption (n = 3) and real
90-day bank bill rate (n = 2), the selections for the bHP-BIC trend filter range from 3
to 13 with a median of 6 and a mode of 5. From Table 1 the latter correspond to cut-off
frequencies with periods around 6 years (24 quarters) compared to the HP1600 (10 years)
and the 2HP1600 (8 years). In all cases the bHP-BIC filter selects more iterations than the
bHP-ADF filter, in most cases considerably more, and so the bHP-BIC trend deviations
will have reduced autocorrelation structure compared to that of the corresponding bHP-
ADF trend deviations.

These observations are consistent with the advice given in Phillips and Shi (2021) that
the bHP-ADF filter is the more appropriate stopping rule for business cycle analysis.
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Figure 5: bHP trends for New Zealand log GDPE, log residential investment, unemployment
(%) and real 90-day bank bill rate (%). Three trends are shown: 2HP1600 (green), bHP-ADF
(red), bHP-BIC (blue) with the bHP models selected by the ADF and BIC stopping rules shown
in each case.

This rule is directly based on the Augmented Dickey-Fuller test for unit roots and, as
a consequence, should ensure that the resulting bHP-ADF trend deviations are free of
any residual stochasic trend. Table 5 shows the p-values of the ADF test applied to the
HP1600, 2HP1600 and 3HP1600 bHP trend deviations with p-values for the HP677 and
the sharpened HP filter sHP677 (both with cut-off period 8 years or 32 quarters) also
shown for comparison.

From Table 5 the bHP-ADF stopping rule (an ADF test with significance level 0.05)
selects n = 1 (the HP1600 filter) for the majority of the 13 series considered. In most
cases the result is reasonably unequivocal with the exceptions being CPI nontradables
(cpin), where the unit root null hypothesis is marginally rejected, and real 90-day bank
bill rate (nine), where it is marginally retained. The HP1600 trend deviation for log
private consumption (cons) shows clear evidence of a unit root. By contrast, the p-values
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Table 5: p-values of the ADF test applied to the HP1600, 2HP1600 and 3HP1600 bHP trend
deviations for each of the 13 New Zealand macroeconomic quarterly series considered. The p-
values for the HP677 and the sharpened HP filter sHP677, both with a cut-off period of 8 years
(32 quarters), are also shown.

gdpe gdpp cons invr gfcf gcon nxsh mtot empl unem cpix cpin nine
HP1600 0.040 0.022 0.141 0.010 0.012 0.010 0.010 0.010 0.039 0.014 0.010 0.047 0.053
2HP1600 0.010 0.010 0.054 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.015 0.013
3HP1600 0.010 0.010 0.023 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
HP677 0.012 0.010 0.080 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.017 0.017
sHP677 0.010 0.010 0.039 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.015 0.010

of the ADF test on the 2HP1600 trend deviations all convincingly reject the unit root
null-hypothesis in favour of stationarity with the possible exception of cons where the
p-value is only just greater than 0.05. As expected, there is no evidence of any residual
stochastic trend in the 3HP1600 trend deviations (recall that the 3HP1600 filter has a 7
year cut-off period).

In part, the near-uniform rejection of the unit root null hypothesis for the 2HP1600 trend
deviations is a result of the filter’s 8 year cut-off period which places more low frequency
variation in the trend by comparison to the HP1600 filter with 10 year cut-off period.
Sharpness also plays a role since sharper trend filters will better extract low frequency
and trend components. While the HP677 trend filter has an 8 year cut-off period, it is
not as sharp as the HP1600 filter (10 year cut-off period) or the 2HP1600 filter (8 year
cut-off period) which both have much the same sharpness, but are not as sharp as the
sHP677 (8 year cut-off period) which is the sharpest. The p-values in Table 5 reflect
these observations. In particular, the 2HP1600 and sHP677 trend filters have 8 year cut-
off periods, are as sharp or sharper than the HP1600 with 10 year cut-off period and,
unlike the HP1600, have trend deviations that are largely free of any residual stochastic
trend.

The previous comments and discussion have a direct bearing on which, if any, of the bHP
filters would be suitable as an omnibus filter. The HP1600 filter is commonly used in
practice as an omnibus filter applied to all quarterly macroeconomic variables considered.
While this strategy has met with some criticism, Kaiser and Maravall (1999, 2012) show
that application of the HP1600 filter generally has little effect on the estimation of lag-
zero cross-correlations between series. Since the HP1600 filter is a non-negative definite
filter (no phase distortion), similar results are to be expected for cross-correlations at lags
other than zero. However, as noted above and in Phillips and Shi (2021), HP1600 trend
deviations are not always free of residual stochastic trend and so the HP1600 filter with
10 year cut-off period will not always be appropriate for use as an omnibus filter. Based
on the properties of the bHP filters given in Section 3.2 and as borne out by the empirical
results in Table 5, the 2HP1600 filter with 8 year cut-off period is a much better candidate
for use as an omnibus filter.

Finally, we consider the sensitivity of the bHP-ADF and bHP-BIC stopping rules to
series length and data augmentation. For long stable time series one might expect that
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Figure 6: The left plot shows the number of iterations selected by the bHP-ADF and bHP-BIC
trend filters for quarterly New Zealand log GDPE, log residential investment, unemployment
(%) and real 90-day bank bill rate (%). In each case 13 increasing length series are considered
with start date 1987q2 and annual end dates from 2007q4 to 2019q4. The right plots show the
histograms of the iterations selected by the bHP-ADF (top) and bHP-BIC (bottom) trend filters
for all 13 New Zealand macroeconomic series considered and all 13 series lengths.

bHP trend selection (ADF or BIC) would vary little with series length. If that were not
the case then earlier historical trend estimates could be revised, possibly significantly,
as a consequence of augmenting the time series with recent data. Such revisions are
undesirable, especially in any official statistics setting where historic trends should remain
unchanged if at all possible. To investigate this issue we consider applying the bHP
trend filters to our New Zealand macroeconomic quarterly data where the starting date is
1987q2 and the end dates are successively chosen to be 2007q4, 2008q4, . . . 2019q4. The
base period of 1987q2 to 2007q4 is approximately 20 years of quarterly data which would
seem a minimum expectation, in practice, for stable stopping times. The 13 annual data
augmentations considered give rise to time series whose lengths range from 20 to 33 years.
Applying the bHP-ADF and bHP-BIC trend filters to these series should provide a guide,
not only for the series lengths required for stopping rule stability, but also their volatility
once stability has been achieved.

Figure 6 plots the number of iterations selected by the bHP-ADF and bHP-BIC trend
filters for the four New Zealand macroeconomic time series shown in Figure 5 (log GDPE,
log residential investment, unemployment and real 90-day bank bill rate). In each case
13 increasing length series are considered with start date 1987q2 and annual end dates
from 2007q4 to 2019q4. For these series the bHP-BIC iterations generally show greater
variability than the bHP-ADF iterations with both showing greater stability from around
2010 (ADF) and 2012(BIC) or approximately 25 years (100 quarters) of data. Some
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iteration series show reasonably dramatic change as series length is augmented with others
very little. For example, bHP-BIC log residential investment shows considerable variation
over the period 2007 to 2019, yet bHP-ADF for the same series shows none since it selects
HP1600 throughout. Note also that the bHP-ADF trend for log GDPE is essentially the
2HP1600 filter from 2009 to 2017, but the HP1600 filter from 2018. Such variability is
typical of the other series in our New Zealand macroeconomic data.

Table 6: Summary statistics for the number of iterations selected by the bHP-ADF and bHP-
BIC trend filters for each of the 13 New Zealand macroeconomic quarterly series considered.
For each series, 13 increasing length series are considered with start date 1987q2 and annual end
dates from 2007q4 to 2019q4.

gdpe gdpp cons invr gfcf gcon nxsh mtot empl unem cpix cpin nine All
Min 1 1 2 1 1 1 1 1 1 1 1 1 2 1
LQ 2 2 2 1 1 1 1 1 2 1 1 2 2 1

ADF Med 2 2 2 1 1 1 1 1 2 1 1 3 2 1
UQ 2 2 3 1 1 1 1 1 2 2 1 4 2 2
Max 4 4 4 1 2 1 2 2 4 3 5 6 3 6
Min 7 6 6 5 7 3 4 6 4 9 13 8 5 3
LQ 7 7 6 6 7 3 5 6 5 9 13 9 5 5

BIC Med 7 7 6 7 7 3 5 6 5 9 14 10 5 7
UQ 8 8 6 10 8 3 5 11 6 10 15 12 6 9
Max 9 9 7 13 9 4 7 33 6 11 18 13 6 33

Table 6 provides summary statistics for all 13 New Zealand macroeconomic quarterly
series considered and all 13 series lengths with start date 1987q2 and annual end dates
2007q4 to 2019q4. It also provides overall summary statistics across all 13 series. Here the
bHP-ADF trend filter selects iterations with a median and lower quartile of 1 (HP1600
with 10 year cut-off) and an upper quartile of 2 (2HP1600 with 8 year cut-off) whereas the
bHP-BIC trend filter selects iterations with a median of 7 (7HP1600 with 5.6 year cut-off),
lower quartile of 5 (5HP1600 with 6.2 year cut-off) and upper quartile of 9 (9HP1600 with
5.3 year cut-off). Figure 6 also shows the histograms of all the iterations selected by the
bHP-ADF and bHP-BIC trend filters. Evidently, bHP-ADF selects far fewer iterations
than bHP-BIC in general with the former being considerably less variable (predominantly
n = 1 or n = 2).

In summary and as noted in Phillips and Shi (2021), the bHP-ADF trend filter is more
appropriate for business cycle analysis although in some cases its variation with series
augmentation may prove to be a limitation in practice. The bHP-BIC trend filter would
not normally be a candidate for business cycle analysis, but may well be appropriate in
other contexts. Of the bHP-ADF trend filters selected by our New Zealand macroeconomic
data, the two predominant choices are the HP1600 and 2HP1600 with cut-off periods of
10 years (40 quarters) and 8 years (32 quarters) respectively. Of the two filters, only the
2HP1600 trend filter almost always delivers trend deviations free of any residual stochastic
trend. As a consequence, there is a stronger case for using the 2HP1600 trend filter as an
omnibus filter rather than the HP1600 trend filter.
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Table 7: Stylised business cycle facts for New Zealand macroeconomic data over the period
1987q2–2019q4: volatility, persistence and most significant cross correlations with log GDPE.
Numbers in parentheses are robustly estimated standard errors; volatility and cross-correlation
measures assume constant volatility trend deviations.

Volatility Persistence
Series HP1600 2HP1600 sHP677 bHP-BIC HP1600 2HP1600 sHP677 bHP-BIC
gdpe 1.30 (0.17) 1.12 (0.13) 1.14 (0.13) 0.87 (0.09) 0.72 (0.06) 0.62 (0.07) 0.62 (0.07) 0.46 (0.08)
gdpp 1.18 (0.21) 0.90 (0.14) 0.95 (0.17) 0.67 (0.09) 0.85 (0.04) 0.77 (0.05) 0.80 (0.05) 0.65 (0.07)
cons 1.48 (0.17) 1.16 (0.12) 1.08 (0.10) 0.83 (0.08) 0.79 (0.05) 0.68 (0.06) 0.64 (0.07) 0.45 (0.08)
invr 7.97 (0.88) 6.36 (0.74) 6.40 (0.72) 5.51 (0.58) 0.79 (0.05) 0.71 (0.06) 0.69 (0.06) 0.62 (0.07)
gfcf 5.46 (0.72) 4.57 (0.51) 4.64 (0.51) 3.49 (0.35) 0.76 (0.06) 0.68 (0.06) 0.67 (0.07) 0.52 (0.07)
gcon 1.29 (0.15) 1.15 (0.13) 1.18 (0.13) 1.12 (0.12) 0.47 (0.08) 0.36 (0.08) 0.35 (0.09) 0.32 (0.08)
nxsh 1.23 (0.15) 1.12 (0.13) 1.12 (0.14) 1.00 (0.12) 0.70 (0.06) 0.65 (0.07) 0.63 (0.07) 0.57 (0.07)
mtot 4.16 (0.58) 3.75 (0.48) 3.73 (0.47) 3.26 (0.43) 0.77 (0.05) 0.73 (0.06) 0.73 (0.06) 0.67 (0.06)
empl 1.30 (0.17) 0.91 (0.10) 0.94 (0.12) 0.69 (0.06) 0.90 (0.04) 0.80 (0.05) 0.82 (0.05) 0.68 (0.06)
unem 0.55 (0.13) 0.45 (0.09) 0.48 (0.10) 0.30 (0.04) 0.87 (0.04) 0.81 (0.05) 0.84 (0.05) 0.62 (0.07)
cpix 0.86 (0.10) 0.81 (0.09) 0.84 (0.10) 0.65 (0.06) 0.76 (0.06) 0.73 (0.06) 0.77 (0.06) 0.62 (0.07)
cpin 0.81 (0.16) 0.73 (0.15) 0.75 (0.15) 0.61 (0.11) 0.76 (0.06) 0.71 (0.07) 0.73 (0.06) 0.61 (0.07)
nine 0.87 (0.12) 0.77 (0.09) 0.77 (0.10) 0.68 (0.06) 0.70 (0.06) 0.61 (0.07) 0.66 (0.07) 0.49 (0.08)

Cross-correlation with log GDPE
Series xt HP1600 2HP1600 sHP677 bHP-BIC Lag
gdpp 0.86 (0.18) 0.82 (0.18) 0.84 (0.18) 0.76 (0.18) xt
cons 0.73 (0.16) 0.68 (0.16) 0.64 (0.14) 0.61 (0.16) xt
invr 0.68 (0.13) 0.65 (0.13) 0.63 (0.13) 0.61 (0.14) xt
gfcf 0.74 (0.15) 0.67 (0.14) 0.66 (0.14) 0.57 (0.14) xt
gcon 0.42 (0.13) 0.33 (0.13) 0.24 (0.11) 0.29 (0.12) xt+5

nxsh -0.47 (0.14) -0.41 (0.14) -0.34 (0.13) -0.35 (0.15) xt+2

mtot 0.54 (0.14) 0.49 (0.14) 0.45 (0.14) 0.41 (0.15) xt+2

empl 0.55 (0.13) 0.41 (0.13) 0.50 (0.14) 0.23 (0.12) xt+2

unem -0.59 (0.15) -0.48 (0.14) -0.51 (0.14) -0.27 (0.11) xt+1

cpix 0.46 (0.13) 0.48 (0.13) 0.47 (0.15) 0.46 (0.14) xt+4

cpin 0.60 (0.16) 0.57 (0.14) 0.52 (0.14) 0.48 (0.14) xt+4

nine 0.41 (0.12) 0.33 (0.12) 0.31 (0.13) 0.28 (0.12) xt+2

4.2 Are bHP stylised business cycle facts materially different
from those produced by a standard HP filter?

We consider stylised business cycle facts represented by volatility, persistence and most
significant cross correlation measures for our 13-variable data set. Our particular interest
is in the results for the HP1600 trend filter with 10 year cut-off period and the HP677,
2HP1600 and sHP677 trend filters which all have 8 year cut-off periods. With the excep-
tion of HP6778, these results are presented in Table 7 where the outcomes for bHP-BIC
are also given and standard errors are calculated using the same methodology as that
given in Hall et al. (2017). Differences between all outcomes are assessed.

From Table 7 the values for bHP-BIC volatility, persistence and cross correlation are

8Results for HP677 are not presented in Table 7, as no results are statistically different from results
for 2HP1600. Moreover, all cross correlation and persistence magnitudes are close to identical, and only
the volatility magnitudes for log residential investment and log employment show minor differences (6.50
versus 6.36, and 0.97 versus 0.91 respectively).
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almost always lower in magnitude than those for HP1600, 2HP1600 and sHP677. The
two exceptions are the sHP677 cross correlations for gcon and nxsh, although differences
are not statistically significant. All cross correlation differences between bHP-BIC esti-
mates, and 2HP1600 and HP1600 estimates are not statistically significant, but bHP-BIC
volatility and persistence estimates are statistically different from those for HP1600 for
around half of our 13 variables, including for major real sector variables such as gdpe,
gdpp, cons, gfcf, and empl. The considerably lower values for almost all of bHP-BIC’s
volatilities, persistence and cross correlations are consistent with this filter removing more
low frequency and (stochastic) trend components than the other filters.

What are the relative merits of HP1600, 2HP1600 and sHP677 filters for stylised business
cycle fact measures?9 On the basis of sharpness there is little to pick between the HP1600
and 2HP1600 filters, with both sharper than the HP677, but not as sharp as the sHP677.
However the HP1600 filter has a 10 year cut-off period which places more low frequency
components, including any residual stochastic trend, in the estimated cycle than the
HP677, 2HP1600 or sHP677 filters which all have an 8 year cut-off period. Hence, as
expected, the HP1600 measures of volatility, persistence and cross correlation are almost
always greater in magnitude than those for 2HP1600 and sHP677, although no difference
is statistically significant. Furthermore, all measures for the 2HP1600 and sHP677 filters
are essentially the same with differences that are not statistically significant.

On balance, therefore, our preference is for the 2HP1600 (or very similar sHP677) mea-
sures which have our preferred 8 year cut-off period, rather than HP1600 measures with
their less desirable 10 year cut-off period.

4.3 Are bHP New Zealand growth cycles noticeably different
from the corresponding HP1600 or BK growth cycles?

Growth cycles can be produced using a wide range of detrending methods. Accordingly, as
well as presenting results using the methodology adopted in Hall and McDermott (2016)
establishing growth cycle turning points from BB dating of HP1600 trend deviations, we
assess the average durations from growth cycles based on two ocular sets of assumptions.
We term one ocular set generous and the other conservative.10

Section 2 cited preliminary evidence from a previous study that the differences between
New Zealand’s post-Second World War classical and growth cycles have been considerable,
with the former having had an average cycle of 7.5 years and the latter only four years.
This evidence was derived from HP1600 filtering with its associated 10 year cut-off period.

9For a comparative analysis of New Zealand stylised business cycle facts using HP1600, BK, CF
and loess (local regression) trend filtering methods, see Hall et al. (2017); and for work finding a clear
preference for measures produced by the HP1600 and BK filters rather than those from Hamilton’s H84
procedure, see Hall and Thomson (2021).

10For an explanation and illustration of an ocular approach to determining growth cycle turning points
for U.S. quarterly per capita hours, see Kulish and Pagan (2021, section 2.1.1). This approach, using
the term eyeballing, has previously been illustrated for New Zealand in Kim, Buckle and Hall (1995) and
Hall, Kim and Buckle (1998).
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Figure 7: Log GDPP trend deviations for HP1600 (black), BK (red), 2HP1600 (green) and
sHP677 (blue) trend filters.

Given the evidence presented in favour of using a 2HP1600 filter with 8 year cut-off
period, we now consider the extent to which HP1600, 2HP1600, sHP677 and BK trend
deviations could lead to materially different growth cycles and average cycle durations.11

Figure 7 shows these trend deviations for log GDPP. Since they all display very similar
movements and potential turning points, one might expect any differences in growth cycles
and durations to be modest.

Using the Hall and McDermott (2016) methodology for our shorter, considerably updated
sample period 1987q2 to 2019q4, we first confirm that HP1600-based growth cycles have
remained significantly different from New Zealand’s classical cycles. Results are shown
in Table 8 where completed growth cycle durations average 2.88 years compared to the
classical cycle average of 8 years. In Table 9 BB-assisted growth cycle turning points are
presented for 2HP1600 and BK to complement those presented in Table 8 for HP1600.
Not surprisingly, the average growth cycle durations for 2HP1600 and BK are similar
to HP1600 (2.58 years for 2HP1600 and 2.36 years for BK) with the 2HP1600 average

11Many other transparent rule-based approaches would also be possible, including for example those
advanced by Canova (1994). Use of some Canova rules have been illustrated for New Zealand and Pacific
Rim cycles in Kim, Buckle and Hall (1995) and Hall, Kim and Buckle (1998). For this study, results from
Canova’s (1994) Rule 1 did not shed any further light over and above the results presented in Tables 8,
9 and 10, so are not presented.
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growth cycle durations adopting a compromise between the HP1600 and BK.12

Table 8: New Zealand real GDP business cycles 1987q2–2019q4. Classical cycle turning points
reflect Bry and Boschan (1971) dating of updated Hall and McDermott (2016) series. Growth
cycle turning points reflect HP1600 detrending and Bry-Boschan assisted dating.

Classical cycles HP1600 growth cycles
Duration (quarters) Duration (quarters)

Peak Trough Expansion Contraction Peak to Peak Peak Trough Expansion Contraction Peak to Peak
1987q4 1988q4 4 1987q4 1988q4 4

1989q2 1990q2 2 4 6
1990q4 1991q2 8 2 12 1990q4 1992q3 2 7 6
1997q2 1998q1 24 3 26 1996q1 1998q3 14 10 21

2000q1 2001q1 6 4 16
2002q4 2003q2 7 2 11
2004q1 2004q4 3 3 5

2007q4 2009q2 39 6 42 2007q3 2009q2 11 7 14
2010q2 2010q4 4 2 11
2012q1 2013q4 5 7 7
2016q3 11 18

2019q4 42 48
Average (quarters) 28.25 3.75 32 Average (quarters) 6.5 5 11.5
Average (years) 7.06 0.94 8 Average (years) 1.63 1.25 2.88

Table 9: 2HP1600 and Baxter-King (BK) real GDP growth cycles 1987q2–2019q4: Bry-Boschan
assisted turning points and cycle durations. Growth cycle turning points reflect 2HP1600 and
BK detrending with Bry-Boschan assisted dating. BK turning points reflect 12 observations lost
at beginning and end of series.

2HP1600 growth cycles Baxter-King growth cycles
Duration (quarters) Duration (quarterrs)

Peak Trough Expansion Contraction Peak to Peak Peak Trough Expansion Contraction Peak to Peak
1987q4 1988q4 4
1989q2 1990q2 2 4 6
1990q4 1992q3 2 7 6 1992q3

1995q3 1996q2 12 3
1996q4 1998q3 17 7 24 1996q4 1998q4 2 8 5
2000q1 2001q1 6 4 13 2000q1 2001q2 5 5 13
2002q4 2003q2 7 2 11 2002q2 2003q1 4 3 9
2004q1 2005q4 3 7 5 2004q2 2005q1 5 3 8
2007q4 2009q2 8 6 15 2007q4 2009q2 11 6 14
2010q2 2010q4 4 2 10 2010q2 2011q1 4 3 10
2012q1 2013q4 5 7 7 2012q1 2013q4 4 7 7
2014q4 2015q2 4 2 11
2016q3 2017q1 5 2 7
2018q4 7 9
Average (quarters) 5.83 4.5 10.33 Average (quarters) 5.88 4.75 9.43
Average (years) 1.46 1.13 2.58 Average (years) 1.47 1.19 2.36

Could adopting a less mechanistic ocular or eyeball approach to dating growth cycle
turning points produce average cycle durations which are somewhat longer, and therefore
potentially of greater usefulness for medium-term fiscal and monetary policy purposes?
In the following we confine the illustrative ocular turning points and average durations

12Turning point and cycle duration results for sHP677 are not presented in Tables 9 and 10, as outcomes
are the same as those for 2HP1600.
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Table 10: 2HP1600 and Baxter-King (BK) real GDP growth cycles 1987q2–2019q4: ocular
turning points and cycle durations.

2HP1600 conservative ocular growth cycles 2HP1600 generous ocular growth cycles
Duration (quarters) Duration (quarters)

Peak Trough Expansion Contraction Peak to Peak Peak Trough Expansion Contraction Peak to Peak
1990q4 1992q3 7 1990q4 1992q3 7
1997q2 1998q3 19 5 26 1997q2 1998q3 19 5 26
2000q1 2001q1 6 4 11 2000q1 2001q1 6 4 11

2004q1 2005q4 12 7 16
2007q4 2009q2 27 6 31 2007q4 2009q2 8 6 15

2010q2 2010q4 4 2 10
2012q1 2013q4 5 7 7

2016q3 29 35 2016q3 11 18
Average (quarters) 20.25 5.50 25.75 Average (quarters) 9.29 5.43 14.71
Average (years) 5.06 1.38 6.44 Average (years) 2.32 1.36 3.68

BK conservative ocular growth cycles BK generous ocular growth cycles
Duration (quarters) Duration (quarters)

Peak Trough Expansion Contraction Peak to Peak Peak Trough Expansion Contraction Peak to Peak
1990q3 1992q3 8 1990q3 1992q3 8
1996q4 1998q4 17 8 25 1996q4 1998q4 17 8 25
2000q1 2001q2 5 5 13 2000q1 2001q2 5 5 13

2004q2 2005q1 12 3 17
2007q4 2009q2 26 6 31 2007q4 2009q2 11 6 14

2010q2 2011q1 4 3 10
2012q1 2013q4 4 7 7

2016q3 29 35 2016q3 11 18
Average (quarters) 19.25 6.75 26.00 Average (quarters) 9.14 5.71 14.86
Average (years) 4.81 1.69 6.50 Average (years) 2.29 1.43 3.71

presented in Table 10 to those from 2HP1600 and BK, as 2HP1600 is marginally preferred
to HP1600, and both 2HP1600 and BK have 8 year cut-off periods. As noted earlier two
ocular methods are considered, one conservative and the other generous.

Our conservative ocular turning points reflect only those which are most obvious to the
eye, and are therefore relatively few in number. But even on this basis, growth cycle
durations average only 6.44 years for 2HP1600 and 6.50 for BK, both well below 9–10
years. Determining a generous set of ocular turning points is more problematical, given
the well-known volatility of New Zealand’s real GDP movements over certain periods.
However, for the turning points offered in Table 10, it is not surprising that average
2HP1600 and BK durations are similar at 3.68 and 3.71 years, even lower than 9–10
years, and are also modestly above the BB-assisted HP1600, 2HP1600 and BK average
durations in Tables 8 and 9.

In summary, our illustrative range of average growth cycle durations for New Zealand’s
real production-based GDP, computed from HP1600, 2HP1600 and BK trend deviations,
are much the same and provide confirmatory evidence that there is no need to consider
cycles whose frequency components have periods less than 10 years. Restricting the cycle
to have frequency components with periods less than 8 years is more than adequate and
has the virtue of better removing any residual stochastic trend from the estimated cycle.
This finding is consistent with that of Canova (1998), who used HP1600 and several other
filters to find that for U.S. real GNP over the period 1955q3 to 1986q3, trend deviation
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cycles had average durations in the range 4 to 6 years.

5 Conclusions

We investigate whether the boosted HP filter (bHP) proposed by Phillips and Shi (2021)
might be preferred for New Zealand trend and growth cycle analysis, relative to using
the HP filter with standard setting λ = 1600 (HP1600). The theoretical properties of the
bHP filter in the body of a quarterly time series are explored and a variety of empirical
evaluations undertaken.

In the body of the series, the bHP filter is equivalent to a symmetric time-invariant moving
average filter whose time and frequency domain properties are given and transfer function
determined. In particular, the bHP trend filter is a non-negative definite filter (no phase
distortion) whose transfer function predominantly passes frequencies below its cut-off
frequency and suppresses frequencies above it. An appropriate measure of the filter’s
quality is its sharpness which is defined here to be the slope of the transfer function at
the cut-off frequency. Both the cut-off frequency and the sharpness of the trend filter
are primary characteristics of the filter which describe its action and effectiveness with
sharper filters better extracting low frequency or trend components. The HP1600 trend
filter (bHP with number of iterations n = 1) has a cut-off frequency with 10 year period
and much the same sharpness as the 2HP1600 filter which has a cut-off frequency with 8
year period. Both are suitable candidates for use in growth cycle analysis unlike the bHP
filters for n > 2. The latter, while appropriate in other contexts, have cut-off periods
which decrease as n increases.

A sub-class of bHP filters (bHPc) is proposed where the parameter λ now depends on
n and a constant cut-off frequency of choice. Such filters are appropriate for growth
cycle analysis and have sharpness that increases with n. However differences between
bHPc filters for n > 2 are unlikely to be practically significant and so the primary cases
of practical interest are the HP filter (n = 1) and the bHP filter with n = 2. Linear
combinations of bHP filters can also be used to construct sharper trend filters with given
cut-off frequency (see Kaiser and Hamming, 1977). A special case is simple symmetric
sharpening of the HP filter (sHP) which yields a trend filter that is a linear combination
of bHP filters (n = 2 and n = 3) whose sharpness exceeds all bHPc trend filters. In
particular, the sHP677 and 2HP1600 trend filters have the same cut-off frequency (8 year
period) with the sHP677 filter being almost 30% sharper than the 2HP1600 filter. In
practice, however, it is likely that any small advantages conferred by the sharper filter
will be outweighed by the computational simplicity of the 2HP1600 filter which is just
two passes of the standard HP filter.

Our empirical evaluations are based on a quarterly, seasonally adjusted data set of 13
key New Zealand macroeconomic variables typically included in macroeconomic models
of small open economies. These evaluations are primarily focused on the key questions
given in Section 1 and have led to the following findings.

Two stopping rules for the bHP filter are proposed in Phillips and Shi (2021) with one
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based on the ADF unit root test (bHP-ADF) and the other on a Bayesian information
criterion (bHP-BIC). The bHP-ADF trend filter is more appropriate for growth cycle
analysis although in some cases its variation with series augmentation is a possible limita-
tion in practice. The bHP-BIC trend filter would not normally be a candidate for growth
cycle analysis, but may well be appropriate in other contexts. Of the bHP-ADF trend
filters selected by our New Zealand macroeconomic data, the two predominant choices
are the HP1600 and 2HP1600 with cut-off periods of 10 years and 8 years respectively.
Of these, only the 2HP1600 trend filter almost always delivers trend deviations free of
any residual stochastic trend and, as a consequence, there is a stronger case for using the
2HP1600 trend filter as an omnibus filter rather than the HP1600 trend filter.

Are stylised business cycle facts from bHP filtering materially differerent to those produced
from HP1600? Here the focus is mainly on the bHP filters most likely to be used for
growth cycle analysis which are the HP1600 filter with 10 year cut-off period and the
2HP1600, sHP677 filters with 8 year cut-off period. For completeness, the bHP-BIC filter
is also considered. As expected, measures of volatility, persistence and cross-correlation
of the associated trend deviations are almost always lowest in magnitude for bHP-BIC
compared to those for HP1600, 2HP1600 and sHP677. For the most part these are
material differences which are statistically significant. On the other hand and again as
expected, these measures are almost always highest for the HP1600 filter whose 10 year
cut-off period places more low frequency components, including any residual stochastic
trend, in the estimated cycle. However, the HP1600, 2HP1600 and sHP677 measures are
not statistically significant, with the 2HP1600 and sHP677 measures being very similar.
Our preference, therefore, is for measures based on the 2HP1600 or sHP677 filters which
have 8 year cut-off period and are as sharp, if not sharper, than the HP1600 filter.

Are New Zealand bHP growth cycles noticeably different from the corresponding HP1600
or BK cycles? Here we note that business cycle periodicities are traditionally assumed
to lie between 6 and 32 quarters (8 years). In the context of more recent business cycle
durations, and as emphasised recently by Beaudry et al. (2020), should periodicities up to
40 quarters or more now be considered? New Zealand GDPP growth cycles for HP1600,
2HP1600, sHP677 and BK trend deviations are considered, and a range of growth cycle
turning points derived using one rule-based and two less mechanistic methods. The trend
deviation movements associated with the four filters look remarkably similar, yielding
average cycle durations that vary from 2.4 to 6.5 years, all of which are significantly
below 40 quarters (10 years). This provides confirmatory evidence that restricting the
cycle to frequency components with periods less than 8 years, rather than 10 years, is
costless in practice for growth cycle analysis. Moreover it has the virtue of better removing
any residual stochastic trend from the estimated cycle.

Our main conclusions are that a 6 to 32 quarter business cycle periodicity is sufficient
to reflect New Zealand growth cycles and determine stylised business cycle facts and,
for our representative 13-variable New Zealand macroeconomic data set, using a bHP
filter (2HP1600) as an omnibus filter for growth cycle analysis is preferable to using the
standard HP filter (HP1600).

35



References

Akaike, H. (1980) Seasonal adjustment by a Bayesian modelling. Journal of Time Series
Analysis 1, 1-13.

Baxter, M. and King, R.G. (1999) Measuring business cycles: approximate band-pass
filters for economic time series. Review of Economics and Statistics 81(4), 575-593.

Beaudry, P., Galizia, D. and Portier, F. (2020) Putting the Cycle Back into Business
Cycle Analysis. American Economic Review 110(1), 1-47.

Beverage, S. and Nelson, C.R. (1981) A new approach to decomposition of economic
time series into permanent and transitory components with particular attention to
measurement of the ’business cycle’. Journal of Monetary Economics 7, 151-174.

Brockwell, P.J. and Davis, R.A. (1991) Time Series and Methods (2nd ed). Springer-
Verlag, New York.

Bry, G. and Boschan, C. (1971) Cyclical analysis of time series: selected procedures and
a computer program. New York, NY: Columbia University Press.

Burns, A.F. and Mitchell, W.C. (1946) Measuring Business Cycles. New York, NY:
NBER.

Canova, F. (1994) Detrending and turning points. European Economic Review 38, 614-
623.

Canova, F. (1998) Detrending and business cycle facts. Journal of Monetary Economics
41, 475-512.

Christiano, L.J. and Fitzgerald, T.J. (2003) The band pass filter. International Economic
Review 44(2), 435-465.

Cleveland, W.S. and Devlin, S.J. (1988) Locally weighted regression: an approach to
regression analysis by local fitting. Journal of the American Statistical Association
83, 596-610.

Cleveland, W.S., Grosse, E. and Shyu, W.M. (1992) Local regression models. In Chapter
8 of Statistical Models in S (eds J.M. Chambers and T.J. Hastie), Wadsworth &
Brooks/Cole.

Cogley, T. and Nason, J.M. (1995) Effects of the Hodrick-Prescott filter on trend and
difference stationary time series: implications for business cycle research. Journal
of Economic Dynamics and Control 19(1-2), 253-278.

De Jong, R.M. and Sakarya, N. (2016) The econometrics of the Hodrick-Prescott filter.
Review of Economics and Statistics 98(2), 310-317

Durbin, J. and Koopman, S.J. (2001) Time Series Analysis by State Space Methods.
Oxford University Press.

36



Findley, D.F., Monsell, B.C., Bell, W.R., Otto, M.C. and Chen, B. (1998) New capabilities
and methods of the X-12-ARIMA seasonal adjustment program. Journal of Business
and Economic Statistics 16, 127-177.
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